Open Access Open Access  Restricted Access Subscription or Fee Access

Physical Characterization of New Li-Ion Conducting NASICON Materials in the LI1+2XTA1-XALX+1(PO4)3 System

MOHAMMED ISAH KIMPA, M.Z.H. Mayzan, Mohd Arif Agam



Fabrication of all-solid-state Li battery with non-flammable ceramics electrolyte has been strongly required to overcome safety issues of present Li batteries. One of the promising structures of ceramic electrolyte in solid state battery is the NASICON structure composed of 3 dimensional frameworks (s.g. R-3c). In this study, Li-ion conducting mixed metal phosphate Li1+2xTa1-xAlx+1(PO4)3, L Ta A P-x(x = 0 ~ 0.5) solid electrolyte that possess rhombohedra NASICON structure was prepared via conventional solid state reaction techniques at various sintering temperature ranging from 700–1000°C for 12 h at 5°C per minute heating and cooling rate. Physical properties of the prepared materials show densification of solid electrolyte at 800°C sintering temperature and could serve as a solid electrolyte in the application of solid state lithium ion batteries industry.

Keywords: Solid State, electrolyte, battery, conductivity, NASICON

Cite this Article

Mohammed Isah Kimpa, M.Z.H Mayzan, Mohd Arif Agam. Physical Characterization of New Li-Ion Conducting NASICON Materials in the LI1+2XTA1-XALX+1(PO4)3 System. Journal of Semiconductor Devices and Circuits. 2019; 6(3): 25–32p.

Full Text:



Ahmadu U. (2014). NASICON: Synthesis, Structure and Electrical Characterization. In MMD Ashutosh Tiwari (Ed.). Advanced Sensor and Detection Materials (pp. 265–308). Scrivener Publishing LLC.

Allen JL, Wolfenstine J, Rangasamy E, Sakamoto J (2012). Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Journal of Power Sources, 206, 315–319.

Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G. ya (1991). Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3). Solid State Ionics, 47, 257–264.

Arbi K, Bucheli W, Jimenez R, Sanz J (2015). High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M=Ti, Ge and 0 ≤ x ≤ 0.5). Journal of the European Ceramic Society, 35, 1477–1484.

Arbi K, Jimenez R, Šalkus T, Orliukas AFF, Sanz J (2015). On the influence of the cation vacancy on lithium conductivity of Li1+xRxTi2−x(PO4)3 Nasicon type materials. Solid State Ionics, 271, 28–33.

Arbi K, Mandal S, Rojo JM, Sanz J (2002). Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors Li1+xTi2-xAlx(PO4)3, 0 < x < 0.7. A Parallel NMR and Electric Impedance Study. Chemistry of Materials, 14, 1091–1097.

Dokko K, Hoshina K, Nakano H, Kanamura K (2007). Preparation of LiMn2O4 thin-film electrode on Li1+xAlxTi2-x(PO4)3 NASICON-type solid electrolyte. Journal of Power Sources, 174, 1100–1103.

Duluard S, Paillassa A, Puech L, Vinatier P, Turq V, Rozier P, Ansart F (2013). Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry. Journal of the European Ceramic Society, 33, 1145–1153.

Francisco BE, Stoldt CR (2014). Lithium-Ion Trapping from Local Structural Distortions in Sodium Super Ionic Conductor (NASICON) Electrolytes. Chemistry of Materials, A-I.

Goharian P, Aghaei AR, Yekta B E, Banijamali S (2015). Ionic conductivity and microstructural evaluation of Li2O–TiO2–P2O5–SiO2glass-ceramics. Ceramics International, 41, 1757–1763.

Hupfer T, Bucharsky EC, Schell KG, Senyshyn A, Monchak M, Hoffmann MJ, Ehrenberg H (2016). Evolution of microstructure and its relation to ionic conductivity in Li1+xAlxTi2-x(PO4)3. Solid State Ionics, 288, 235–239.

Jackman SD, Cutler RA (2013). Stability of NASICON-type Li1.3Al0.3Ti1.7P3O12 in aqueous solutions. Journal of Power Sources, 230, 251–260.

Jiangtao C, Jun W, Fei Z, De Y, Guanngan Z, Renfu Z, Pengxum Y (2008). Structure and photoluminescence property of Eu-doped SnO2 nanocrystalline powders fabricated by sol–gel calcination process. Journal of Physics D:, 41, 1–5.

Noguchi Y, Kobayashi E, Plashnitsa LS, Okada S, Yamaki JI (2013). Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochimica Acta, 101, 59–65.

Ohta S, Kobayashi T, Asaoka T (2011). High lithium ionic conductivity in the garnet-type oxide Li7-XLa3(Zr2-X, NbX)O12 (X = 0–2). Journal of Power Sources, 196, 3342–3345.

Thangadurai V, Shukla AK, Gopalakrishnan J (1999). New lithium-ion conductors based on the NASICON structure. Journal of Materials Chemistry, 9, 739–741.

Wang J, Li Y, Sun X (2013). Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy, 2, 443–467.

Wang Y, Richards WD, Ong S P, Miara LJ, Kim JC, Mo Y, Ceder G (2015). Design principles for solid-state lithium superionic conductors. Nature Materials, 14, 1–7.

Wolfenstine J, Foster D, Read J, Allen JL (2008). Rate-controlling species for the sintering of LiTi2(PO4)3. Journal of Power Sources, 182, 626–629.

Xu, X., Wen, Z., Gu, Z., Xu, X., & Lin, Z. (2004). Preparation and characterization of lithium ion-conducting glass-ceramics in the Li1+xCrxGe2−x(PO4)3 system. Electrochemistry Communications, 6, 1233–1237.

Zangina T, Hassan J, Amin K, Azis S, Ahmadu U, See A (2016). Sintering behavior, ac conductivity and dielectric relaxation of Li1.3Ti1.7Al0.3(PO4)3 NASICON compound. Results in Physics, 6, 719–725.



  • There are currently no refbacks.

Copyright (c) 2020 Journal of Semiconductor Devices and Circuits