Open Access Open Access  Restricted Access Subscription or Fee Access

Optimization of a Hybrid Core Photonic Crystal Fiber for THz Applications

saikat ray, mohammad mohiuddin uzzal

Abstract


Despite several real-life applications, the development of low-loss terahertz waveguide is still a challenge for long-distance applications due to its low confinement and high propagation loss. In this paper, an octagonal waveguide structure has been optimized for minimum propagation loss in the THz frequency band. The optimized structure has a core diameter of 300 um with an operating frequency of 1.1 THz. From the optimized structure, we found optimized power confinement having core power fraction of 53%.


Keywords


Photonic crystal fiber; terahertz; hybrid structure; power fraction; effective material loss;

Full Text:

PDF

References


1. Wang K, Mittleman DM. Metal wires for terahertz wave guiding. Nature. 2004; 432 (7015): 376–379p.

Gallot G, Jamison SP, McGowan RW, Grischkowsky D. Terahertz waveguides. J. Opt. Soc. Amer. B. 2000; 17 (5): 851–863p.

Bowden B, Harrington JA, Mitrofanov O. Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 2007; 32 (20): 2945–2947p.

Mendis R, Grischkowsky D. Plastic ribbon terahertz wave- guides. J. Appl. Phys. 2000; 88: 4449–4451p.

Chen LJ, Chen HW, Kao TF. Low-loss sub-wavelength plastic fiber for terahertz wave-guiding. Opt. Lett. 2006; 31: 306–308p.

Hidaka T, Minamide H, Ito H. Ferroelectric PVDF cladding tera-hertz waveguide. J. Lightwave Technol. 2005; 23: 2469–2473p.

Skorobogatiy M, Dupuis A. Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 2007; 90: 113514p.

Lu JY, Yu CP, Chang HC. Terahertz air-core microstructure fiber. Appl. Phys. Lett. 2008; 92: 064105p.

Chen D, Chen H. A novel low-loss terahertz waveguide: polymer tube. Opt. Express. 2010; 18: 3762–3767p.

Bao H, Nielsen K, Rasmussen HK. Fabrication and characterization of porous-core honeycomb bandgap terahertz fibers. Opt. Express. 2012; 20: 29507–29517p.

Nielsen K, Rasmussen HK, Jepsen PU. Porous-core honey-comb bandgap THz fiber. Opt. Lett. 2011; 36: 666–668p.

Hassani A, Dupuis A, Skorobogatiy M. Porous polymer fibers for low-loss terahertz guiding. Opt. Express. 2008; 16: 6340–6351p.

Atakaramians S, Shahraam AV, Fischer BM. Porous fibers: A novel approach to low loss terahertz waveguides. Opt. Express. 2008; 16: 8845–8854p.

Russell PJS. Photonic crystal fibers. Science. 2003; 299 (5605): 358–362p.

Kaijage SF, Ouyang Z, Jim X. Porous-core photonic crystal fiber for low-loss terahertz wave guiding. IEEE Photon. Technol. Lett. 2013; 25: 1454–1457p.

Islam R, Hasanuzzaman GKM, Habib MS. Low-loss rotated porous core hexagonal single- mode fiber in terahertz regime. Opt. Fiber Technol. 2015; 24: 38–43p.

Islam MS, Sultana J, Atai J, Abbott D, Rana S, Rakibul M. Ultra low-loss hybrid core porous fiber for broadband applications. Applied Optics. 2017; 56 (4): 1232p.

Chen N, Liangand J, Ren L. High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance. Appl. Opt. 2013; 52 (21): 5297–5302p.

Rana S, Islam MS, Faisal M, Roy KC, Islam R, Kaijage SF. Single-mode porous fiber for low-loss polarization maintaining tera- hertz transmission. Opt. Eng. 2016; 55: 076114p.

Islam MS, Islam MR, Faisal M, Arefin ASMS, Rahman H, Sultana J, Rana S. Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Opt. Eng. 2016; 55: 076117p.

Rana S, Kibria G, Hasanuzzaman M. Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding. Opt. Eng. 2014; 53: 115107p.

Islam R, Habib MS, Hasanuzzaman GKM. A novel low-loss diamond-core porous fiber for polarization maintaining terahertz trans- mission. IEEE Photon. Technol. Lett. 2016; 28: 1537–1540p.

Hasan MR, Anower MS, Hasan MI. Polarization maintaining low-loss slotted core kagome lattice terahertz fiber. IEEE Photon. Technol. Lett. 2016; 28: 1751–1754p.

Cite this Article

Saikat Ray, Mohammad Mohiuddin Uzzal. Optimization of a Hybrid Core Photonic Crystal Fiber for THz Applications. Trends in Opto-Electro & Optical Communication. 2019; 9(2): 18–24p.




DOI: https://doi.org/10.37591/toeoc.v9i2.3219

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Trends in Opto-Electro and Optical Communications