Open Access Open Access  Restricted Access Subscription or Fee Access

Simulation of Electric Field Induced by Electromagnetic Radiation on Spherical Nanoparticles

Jyoti Mali, Omprakash .

Abstract


Abstract

In this article, the interaction of light and matter of nanoparticles is simulated for the electric field induced by electromagnetic radiation on spherical nanoparticles. The absorption, scattering and extinction efficiencies are demonstrated for initial wavelength of the incident of light from 300 nm to the final wavelength at 900 nm range for the silver material of 250 nm (spherical nanoparticles) radius with 1.0 refractive index. These optical properties vary according to the optical material used, its shape and size, and polarizability of its surrounding medium. The optical properties demonstrated in this paper are important to understand the basic physical behavior of light interaction of the spectra of spherical nanoparticles that is the silver which is wavelength dependent dielectric material in nature.

Keywords: Nanomaterial, nanooptics, photonics crystal, plasmonics, optoelectronics, nanolasers

Cite this Article

Jyoti Mali, Omprakash. Simulation of Electric Field Induced by Electromagnetic Radiation on Spherical Nanoparticles. Trends in Opto-Electro & Optical Communications. 2018; 8(2): 20–24p.


Keywords


Nanomaterial, Nano optics, Photonics crystal,Plasmonics.

Full Text:

PDF

References


Ulrich Hohenester, AndreasTrügler, (2012), MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles, Computer Physics Communications, ELSEVIER, Vol.182,page 370-181.

Jennifer.A, Dionne, Harry .A,(2012), Plasmonics: Metal worthy methods and materials in nano photonics, Material Research Society, Vol.no37, page 717-724.,doi:10.1557.

K.H.Lee, I.Ahmed,R.S.M.Goh,(2011), Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for Plasmonic Applications, PIER, Vol.no.116, page 441-456, 1559-8985

Bohren, C. F., and Huffman, D. R., "Absorption and Scattering of Light by Small Particles," Wiley-VCH, ISBN: 9783527618156 (2007).

E.T.Yu, D.Derkacs, S.H.Lim,P.Matheu, D.M.Schaadt (2008), plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices, Proc.SPIE, Vol.no. 7033, no. 70331V, page 70331V-1 to 70331V-9, 0277-786x/12.798327.

Chhristina M, Farhan R, (2008) subwavelength Nanopatch cavities for semiconductor plasmon lasers, IEEE Journal of quantum electronics, Vol.no. 44, no.5,page 435-447, 0018-9197

Georgios V, Sukru E, David A.B.M, Shanhui F, (2009), Modeling of plasmonic waveguide components and networks, Journal of computational and theoretical nanopscience, Vol.no.6, no.8, page 1808-1826, 1546-1955.

Kevin .F.M , Nikolay I.Z, (2009), Active plasmonics: current status, LASER and Photonics Lett. Wiley, Vol.no.4, no.4, page 562-567, 2000 900035.

Yat Li , Fang Qian, Jie Xiang, and Charles M (2006), Nanowire electronics and optoelectronics device , Materialstoday Elsevier,Vol.9,Issue no 10,page 18-27, 1369 7021.

Chia-Jean Wang, Ludan Huang, Babak A, Lih Y (2006), Subdiffraction Photon Guidance by Quantum dot cascades, Nano letters, American Chemical society,Vol.6,Issue no 11,page 2549-2553, 061958g.

Chia-Jean Wang , Lih Y. Lin (2007), Nanoscale waveguiding methods, Nanoscale Res Letter,Springer, Vol no 2, pages 219-229, DOI 10.1007/s11671-007-9056-6.

K W Yu, J J Xiao (2007),optical properties of noble-metallic nanoparticles chains embedded in a graded-index host, Appl.Phys.Lett, Vol.88,.No.241111.

Dotan, H., Kfir, O., Sharlin, E., et al., “Resonant light trapping in ultrathin films for water splitting.,” Nat. Mater., 12, 158-64 (2013).

Ramadurgam S., and Yang, C., "Semiconductor-metal-semiconductor core-multishell nanowires as negative-index metamaterial in

visible domain," Scientific Reports, 4, 1-7 (2014).

Ramadurgam, S., Lin, T.-G. and Yang, C., "Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells," Nano Letters, 14, 4517-4522 (2014).

Baudilio Tejerina; Tyler Takeshita; Logan Ausman; George C. Schatz (2014), "Nanosphere Optics Lab Field Simulator," https://nanohub.org/resources/nsoptics3D. (DOI: 10.4231/D3FF3M064).

E.T.Yu, D.Derkacs, S.H.Lim,P.Matheu, D.M.Schaadt (2008), plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices, Proc.SPIE, Vol.no. 7033, no. 70331V, page 70331V-1 to 70331V-9, 0277-786x/12.798327.

Chhristina M, Farhan R, (2008) subwavelength Nanopatch cavities for semiconductor plasmon lasers, IEEE Journal of quantum electronics, Vol.no. 44, no.5,page 435-447, 0018-9197

Georgios V, Sukru E, David A.B.M, Shanhui F, (2009), Modeling of plasmonic waveguide components and networks, Journal of computational and theoretical nanopscience, Vol.no.6, no.8, page 1808-1826, 1546-1955.




DOI: https://doi.org/10.37591/toeoc.v8i2.827

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Trends in Opto-Electro and Optical Communications