Open Access Open Access  Restricted Access Subscription or Fee Access

Experimental Investigations on the Durability of PMMA Microfluidic Devices Fabricated by Hot Embossing Lithography with Plasma Processing for Bioengineering Applications

Subhadeep Mukhopadhyay

Abstract


In this research paper, total 1290 individual static contact angles of different working liquids have been measured and recorded on the flat polymethylmethacrylate (PMMA) surfaces. Total 474 individual PMMA microfluidic devices have been fabricated by the maskless lithography, hot embossing lithography and direct bonding technique inside the cleanroom laboratory and mechanical engineering workshop to determine the durability of these microfluidic devices. Total nine individual working liquids have been used to record the static contact angles in materials science laboratory. The durability of PMMA microfluidic devices is determined as approximately 6 months continuously after the fabrication. The estimated durability is suitable for any point-of-care purpose with sufficient portability in the bioengineering applications. This estimation of durability is one novel approach in this research paper. The measurements on the surface-driven capillary flow of any working liquid in this research paper are related with the principles of fluid dynamics. The measurements of static contact angles of all working liquids are related with the principles of fluid statics. Fluid mechanics is fundamentally divided into fluid dynamics and fluid statics on the basis of the motion of fluid. Author has performed all the experiments of this research paper during more than 1 year using his own hands-on completely.

Keywords


PMMA, Static contact angle, Durability, Microfluidic device

Full Text:

PDF

References


Mukhopadhyay S, et al., e-J Surf Sci Nanotech. 2009; 7: 330p.

Mathur A, et al., Curr Appl Phys. 2009; 9: 1199p.

Mukhopadhyay S, et al., J Micromech Microeng. 2010; 20: 055018p.

Mukhopadhyay S, et al., Nanoscale Res Lett. 2011; 6: 411p.

S. Mukhopadhyay, et al., Adv Sci Focus. 2013; 1: 139p.

Mukhopadhyay S, et al., Int J Adhes Adhes. 2013; 42: 30p.

Mukhopadhyay S, et al., Surf Rev Lett. 2015; 22: 1550050p.

Mukhopadhyay S, et al., J Nanosci Nanoeng Appl. 2015; 5: 19p.

Mukhopadhyay S, J Polym Compos. 2016; 4: 27p.

Rayleigh L, Proceedings of the Royal Society of London. Series A. 1916; 92: 184p.

Newman S, J Colloid Interf Sci. 1968; 26: 209p.

Yang YW, et al., J Colloid Interf Sci. 1988; 122: 35p.

Shikhmunaev YD, AIChE J. 1996; 42: 601p.

Weislogel MM, AIChE J. 1997; 43: 645p.

Zhao B, et al. Science. 2001; 291: 1023p.

Zhao B, et al., Anal Chem. 2002; 74: 4259p.

Santos, et al., J Stat Phys. 2005; 121: 197p.

Hay KM, et al., Int J Numer Anal Model. 2008; 5: 85p.

Vourdas N, et al., Microelectron Eng. 2008; 85: 1124p.

Hilpert M, J Colloid Interf Sci. 2009; 337: 138p.

Saha AA, et al., J Colloid Interf Sci. 2009; 339: 461p.

Chen Y, et al., Microelectron Eng. 2009; 86: 1317p.

Saha AA, et al., J Fluid Eng. 2009; 131: 061202

Sultana S, et al., Thin Solid Film. 2009; 518: 606p.

Saha AA, et al., Microfluid Nanofluid. 2009; 7: 451p.

Maity S, et al., J Magn Magn Mater. 2016; 419: 292p.

Becker H, et al. Talanta. 2002; 56: 267p.

Nordstrom M, et al., J Micromech Microeng. 2004; 14: 1614p.

Becker H, et al., Sensor Actuator. 2000; 83: 130p.

Datta P, et al., Microsyst Technol. 2007; 13: 265p.

Kern P, et al., J Micromech Microeng. 2007; 17: 1168p.

Cameron NS, et al., Soft Matter. 2006; 2: 553p.

Liu CZ, et al., Mater Chem Phys. 2004; 85: 340p.

Upadhyay DJ, et al., J Phys D: Appl Phys. 2005; 38: 922p.

Liu C, et al., Surf Coat Tech. 2006; 201: 2341p.

Liu C, et al., Surf Coat Tech. 2004; 185: 311p.

Holmes RJ, et al., J Phys Chem Solid. 2011; 72: 626p.

Heyderman LJ, et al., Microelectron Eng. 2001; 57: 375p.

Brown L, et al., Lab Chip. 2006; 6: 66p.

Tsao CW, et al., Microfluid Nanofluid. 2009; 6: 1p.

Borcia G, et al., J Optoelectron Adv Mater. 2006; 8: 1048p.

Cui NY, et al., Appl Surf Sci. 2007; 253: 3865p.

Luo JK, et al. J Micromech Microeng. 2007; 17: S147.

Bouaidat S, et al., Lab Chip. 2005; 5: 827p.

Yang LJ, et al., J Micromech Microeng. 2004; 14: 220p.

Chen YF, et al., Microfluid Nanofluid. 2008; 5: 193p.

Hu G, et al., Chem Eng Sci. 2007; 62: 3443p.

Waghmare PR, et al., J Fluids Eng. 2010; 132: 054502p.

Ichikawa N, et al., J Colloid Interf Sci. 2004; 280: 155p.

Suk JW, et al., J Micromech Microeng. 2007; 17: N11.

Kim DS, et al., J Micromech Microeng. 2002; 12: 236p.

Atencia J, et al., Nature. 2005; 437: 648p.

Xue HT, et al., Chem Phys Lett. 2006; 432: 326p.

Sciffer S, Chemi Eng Sci. 2000; 55: 5933p.

Wang XD, et al., Langmuir. 2007; 23: 8042p.

Burnett H, et al., J Vac Sci Technol. 2005; B 23: 2721p.

Packham DE, Int J Adhes Adhes. 2003; 23: 437p.

Journet C, et al., Europhys Lett. 2005; 71: 104p.

Sun T, et al., Acc Chem Res. 2005; 38: 644p.

Liechti KM, et al., Int J Fracture. 1997; 86: 361p

Bhattacharya S, et al., J Microelectromech Syst. 2005; 14: 590p.

Jung YC, et al., Nanotechnology. 2006; 17: 4970p.

Borisenko KB, et al., J Colloid Interf Sci. 2008; 326: 329p.

Kwok SCH, et al., Diam Relat Materi. 2005; 14: 78p.

Huh C, et al., J Colloid Interf Sci. 1971; 35: 85p.

Yang C, et al., Exp Fluids. 2002; 33: 728p.

Bilenberg B, et al., J Micromech Microeng. 2004; 14: 814p.

Stone HA, et al., Annu Rev Fluid Mech. 2004; 36: 381p.

Erickson D, et al., Analytica Chimica Acta. 2004; 507: 11p.

Abgrall P, et al., J Micromech Microeng. 2007; 17: R15.


Refbacks

  • There are currently no refbacks.