Open Access Open Access  Restricted Access Subscription or Fee Access

Substantial Enrichment of Mechanical, Thermal and Electrical Properties of Thermoplastic Polyester Elastomer by Melt Blending with Nano-ZnO

Haydar Zaman, Ruhul A. Khan


Polymers are more reinforced with nano-metal oxides, a completely flexible composite of engineering that simplifies the way of exhibiting good mechanical and chemical features. Polymer mixtures represent a very vital field in the handling of innovative ingredients, which have better features than net polymers. Polymer mixtures can deliver ingredients with prolonged useful features beyond the range that can be achieved from a single polymer equivalent. A methodical study was performed to test the features of the matrix by introducing nano-ZnO (4 nm, 1–5 wt.%) into the matrix from a poly(butylene terephthalate)-block-poly (tetramethylene glycol) (PBT-PTMG)-based thermoplastic polyester elastomer (TPE). ZnO nanoparticles were coated with maleate styrene-ethylene-butylene-styrene (SEBSMA) before melt blending for better surface bond and fine dispersion. The effects of uncoated and coated nano-ZnO (nZnO) particles with varying concentrations on the mechanical, thermal, and electrical features of binary TPE/nZnO nanocomposites were manufactured by the melt compounding process tracked by hot press mold. The tensile features such as yield strength, tensile strength, tensile modulus, and elongation at break varied with the concentration of nZnO. The mechanical features exhibited that the strength and modulus increased with increasing nZnO loadings while the elongation at break recorded a linear decrease. The morphological observation revealed that the filler dispersed well in the polymer matrix due to the formation of chemical bonds. Nano-ZnO incorporation enhances electrical and thermal features such as melting temperature, and thermal stability of nanocomposites.


Thermoplastic polyester elastomer, nano-ZnO, nanocomposites, mechanical and thermal properties

Full Text:



Bae J, Lee S, Kim BC, Cho HH, Chae DW. Polyester-based thermoplastic elastomer/MWNT composites: rheological, thermal, and electrical properties. Fibers Polym. 2013;14(5):729–35. doi: 10.1007/s12221–013–0729–8.

Zhan J, Ma L, Liu X, Hu W, Song L, Hu Y. Mechanical, thermal, and flame-retardant behaviors of thermoplastic polyether–ester elastomer composites with polyphenylene oxide and aluminum hypophosphite. Polym Plast Technol Eng. 2017;56(10):1096–107. doi: 10.1080/03602559.2016.1253737.

Gregory GL, Sulley GS, Carrodeguas LP, Chen TTD, Santmarti A, Terrill NJ, et al. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization. Chem Sci. 2020;11(25):6567–81. doi: 10.1039/d0sc00463d.

Parcheta P, Głowińska E, Datta J. Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers. Eur Polym J. 2020;123:109422. doi: 10.1016/j.eurpolymj.2019.109422.

Jiang J, Tang Q, Pan X, Xi Z, Zhao L, Yuan W. Structure and Morphology of Thermoplastic Polyamide Elastomer Based on Long-Chain Polyamide 1212 and Renewable poly(trimethylene glycol). Ind Eng Chem Res. 2020;59(39):17502–12. doi: 10.1021/acs.iecr.0c01334.

Zanchin G, Leone G. Polyolefin thermoplastic elastomers from polymerization catalysis: advantages, pitfalls and future challenges. Prog Polym Sci. 2021;113:101342. doi: 10.1016/j.progpolymsci.2020.101342.

Jiang R, Chen Y, Yao S, Liu T, Xu Z, Park CB, et al. Preparation and characterization of high melt strength thermoplastic polyester elastomer with different topological structure using a two-step functional group reaction. Polymer. 2019;179:121628. doi: 10.1016/j.polymer.2019.121628.

Yao C, Yang G. Crystallization, and morphology of poly (trimethylene terephthalate)/poly (ethylene oxide terephthalate) segmented block copolymers. Polymer. 2010;51(6):1516–23. doi: 10.1016/j.polymer.2010.01.045.

Ryou JH, Ha CS, Cho WJ. Miscibility of poly (vinyl methyl ether) and poly (styrene‐co‐2‐vinylnaphthalene) blends by FT‐IR spectroscopy and Tg measurements. J Polym Sci A Polym Chem. 1993;31(2):325–33. doi: 10.1002/pola.1993.080310204.

Džunuzović E, Jeremić K, Nedeljković JM. In situ radical polymerization of methyl methacrylate in a solution of surface modified TiO2 and nanoparticles. Eur Polym J. 2007;43(9):3719–26. doi: 10.1016/j.eurpolymj.2007.06.026.

Convertino A, Leo G, Tamborra M, Sciancalepore C, Striccoli M, Curri M, et al. TiO2 colloidal nanocrystals functionalization of PMMA: A tailoring of optical properties and chemical adsorption. Sens Actuators B. 2007;126(1):138–43. doi: 10.1016/j.snb.2006.11.043.

Lu S-R, Zhang H-L, Zhao C, Wang X. Studies on the properties of a new hybrid materials containing chain-extended urea and SiO2−TiO2 particles. Polymer. 2005;46(23):10484–92. doi: 10.1016/j.polymer.2005.08.029.

Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12):1825–34. doi: 10.1016/j.drudis.2017.08.006.

Kim S, Lee SY, Cho HJ. Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma. Nanomaterials (Basel). 2017;7(11):354. doi: 10.3390/nano7110354.

Zhang Z-Y, Xiong H-M. Photoluminescent ZnO nanoparticles and their biological applications. Materials. 2015;8(6):3101–27. doi: 10.3390/ma8063101.

Tjong S, Bao S. Fracture toughness of high-density polyethylene/SEBS-g-MA/montmorillonite nanocomposites. Compos Sci Technol. 2007;67(2):314–23. doi: 10.1016/j.compscitech.2006.08.006.

Wang Z, Lu Y, Liu J, Dang Z, Zhang L, Wang W. Preparation of Nano‐zinc oxide/EPDM composites with both good thermal conductivity and mechanical properties. J Appl Polym Sci. 2011;119(2):1144–55. doi: 10.1002/app.32736.

Sinha Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28(11):1539–641. doi: 10.1016/j.progpolymsci.2003.08.002.

Altan M, Yildirim H. Mechanical and antibacterial properties of injection molded polypropylene/TiO2 nanocomposites: effects of surface modification. J Mater Sci Technol. 2012;28(8):686–92. doi: 10.1016/S1005–0302(12)60116–9.

Li JH, Hong RY, Li MY, Li HZ, Zheng Y, Ding J. Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog Org Coat. 2009;64(4):504–9. doi: 10.1016/j.porgcoat.2008.08.013.

American Society for Testing and Materials. Standard test method for tensile properties of plastics. 2014;D638–14:17.

Ghazy O, Freisinger B, Lieberwith I, Landfester K. Tuning the size and morphology of P3HT/PCBM composite nanoparticles: towards optimized water-processable organic solar cells. Nanoscale. 2020;12(44):22798–807. doi: 10.1039/d0nr05847e.

Kilburn D, Dlubek G, Pionteck J, Alam MA. Free volume in poly (n-alkyl methacrylate) s from positron lifetime and PVT experiments and its relation to the structural relaxation. Polymer. 2006;47(22):7774–85. doi: 10.1016/j.polymer.2006.08.055.

Rahman MT, Asadul Hoque MA, Rahman GT, Gafur MA, Khan RA, Hossain MK. Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results Phys. 2019;13:102264. doi: 10.1016/j.rinp.2019.102264.

Zaman HU, Hun PD, Khan RA, Yoon K. Effect of surface-modified nanoparticles on the mechanical properties and crystallization behavior of PP/CaCO3 nanocomposites. J Thermoplast Compos Mater. 2013;26(8):1057–70. doi: 10.1177/0892705711433351.

Sung JH, Kim HS, Jin H, Choi HJ, Chin I. Nanofibrous membranes prepared by multiwalled carbon nanotube/poly (methyl methacrylate) composites. Macromolecules. 2004;37(26):9899–902. doi: 10.1021/ma048355g.

Tjong SC, Meng YZ. Impact‐modified polypropylene/vermiculite nanocomposites. J Polym Sci B Polym Phys. 2003;41(19):2332–41. doi: 10.1002/polb.10587.


  • There are currently no refbacks.