FUEL CELL-PV HYBRID SYSTEM FOR EVs
Abstract
Keywords
Full Text:
PDFReferences
Ke, W., Zhang, S., Wu, Y., Zhao, B., Wang, S., & Hao, J. (2017). Assessing the future vehicle fleet electrification: the impacts on regional and urban air quality. Environmental science & technology, 51(2), 1007-1016.
Kouridis, C., & Vlachokostas, C. (2022). Towards decarbonizing road transport: Environmental and social benefit of vehicle fleet electrification in urban areas of Greece. Renewable and Sustainable Energy Reviews, 153, 111775.
Bauer, G., Zheng, C., Greenblatt, J. B., Shaheen, S., & Kammen, D. M. (2020). On-demand automotive fleet electrification can catalyze global transportation decarbonization and smart urban mobility. Environmental science & technology, 54(12), 7027-7033.
Dia, H. (2019). Rethinking urban mobility: unlocking the benefits of vehicle electrification. Decarbonising the built environment: charting the transition, 83-98.
Boulanger, A. G., Chu, A. C., Maxx, S., & Waltz, D. L. (2011). Vehicle electrification: Status and issues. Proceedings of the IEEE, 99(6), 1116-1138.
Milovanoff, A., Posen, I. D., & MacLean, H. L. (2020). Electrification of light-duty vehicle fleet alone will not meet mitigation targets. Nature Climate Change, 10(12), 1102-1107.
Martins-Turner, K., Grahle, A., Nagel, K., & Göhlich, D. (2020). Electrification of urban freight transport-a case study of the food retailing industry. Procedia Computer Science, 170, 757-763.
Martínez, M., Moreno, A., Angulo, I., Mateo, C., Masegosa, A. D., Perallos, A., & Frías, P. (2021). Assessment of the impact of a fully electrified postal fleet for urban freight transportation. International Journal of Electrical Power & Energy Systems, 129, 106770.
Jakub, S., Adrian, L., Mieczysław, B., Ewelina, B., & Katarzyna, Z. (2022). Life cycle assessment study on the public transport bus fleet electrification in the context of sustainable urban development strategy. Science of The Total Environment, 824, 153872.
Kushnir, D., & Sandén, B. A. (2012). The time dimension and lithium resource constraints for electric vehicles. Resources Policy, 37(1), 93-103.
Ou, S., Hsieh, I. Y. L., He, X., Lin, Z., Yu, R., Zhou, Y., & Bouchard, J. (2021). China's vehicle electrification impacts on sales, fuel use, and battery material demand through 2050: Optimizing consumer and industry decisions. Iscience, 24(11).
Schultz, P., Carletti, E., & Espinoza, D. A. I. The Automotive Electrification and its impact on the Lithium Business.
Tahil, W. (2007). The trouble with lithium. Implications of Future PHEV Production for Lithium Demand. Martainville: Meridian International Research.
Hache, E., Seck, G. S., Simoen, M., Bonnet, C., & Carcanague, S. (2019). Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport. Applied Energy, 240, 6-25.
Cano, Z. P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., & Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature energy, 3(4), 279-289.
Thomas, C. E. (2009). Fuel cell and battery electric vehicles compared. international journal of hydrogen energy, 34(15), 6005-6020.
Deng, J., Bae, C., Denlinger, A., & Miller, T. (2020). Electric vehicles batteries: requirements and challenges. Joule, 4(3), 511-515.
Williams, Q., & Hemley, R. J. (2001). Hydrogen in the deep Earth. Annual Review of Earth and Planetary Sciences, 29(1), 365-418.
Milkov, A. V. (2022). Molecular hydrogen in surface and subsurface natural gases: Abundance, origins and ideas for deliberate exploration. Earth-Science Reviews, 230, 104063.
Deutsch, A. J. (1950). The Abundance of the Elements. Scientific American, 183(4), 14-17.
Praet, A., Barucci, M. A., Clark, B. E., Kaplan, H. H., Simon, A. A., Hamilton, V. E., ... & Lauretta, D. S. (2021). Hydrogen abundance estimation and distribution on (101955) Bennu. Icarus, 363, 114427.
Trincado, M., Banerjee, D., & Grützmacher, H. (2014). Molecular catalysts for hydrogen production from alcohols. Energy & Environmental Science, 7(8), 2464-2503.
Xu, C., Yang, W., Guo, Q., Dai, D., Chen, M., & Yang, X. (2013). Molecular hydrogen formation from photocatalysis of methanol on TiO2 (110). Journal of the American Chemical Society, 135(28), 10206-10209.
Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis today, 139(4), 244-260.
Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869.
Voitic, G., Pichler, B., Basile, A., Iulianelli, A., Malli, K., Bock, S., & Hacker, V. (2018). Hydrogen production. In Fuel Cells and Hydrogen (pp. 215-241). Elsevier.
Kaiwen, L., Bin, Y., & Tao, Z. (2018). Economic analysis of hydrogen production from steam reforming process: A literature review. Energy Sources, Part B: Economics, Planning, and Policy, 13(2), 109-115.
Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews, 67, 597-611.
Taherian, Z., Khataee, A., Han, N., & Orooji, Y. (2022). Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review. Journal of Industrial and Engineering Chemistry, 107, 20-30.
Balat, M. (2008). Possible methods for hydrogen production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(1), 39-50.
Kalamaras, C. M., & Efstathiou, A. M. (2013). Hydrogen production technologies: current state and future developments. In Conference papers in science (Vol. 2013). Hindawi.
Okonkwo, O., Zhang, H., Li, K., Liu, Q., & Biswas, P. (2022). Thermodynamic analysis of hydrocarbon reforming. Journal of CO2 Utilization, 60, 101998.
Alhamdani, Y. A., Hassim, M. H., Ng, R. T., & Hurme, M. (2017). The estimation of fugitive gas emissions from hydrogen production by natural gas steam reforming. International Journal of Hydrogen Energy, 42(14), 9342-9351.
Ahmed, S., Aitani, A., Rahman, F., Al-Dawood, A., & Al-Muhaish, F. (2009). Decomposition of hydrocarbons to hydrogen and carbon. Applied Catalysis A: General, 359(1-2), 1-24.
Chisholm, G., Zhao, T., & Cronin, L. (2022). Hydrogen from water electrolysis. In Storing Energy (pp. 559-591). Elsevier.
Ursua, A., Gandia, L. M., & Sanchis, P. (2011). Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 100(2), 410-426.
Wang, S., Lu, A., & Zhong, C. J. (2021). Hydrogen production from water electrolysis: role of catalysts. Nano Convergence, 8, 1-23.
Zoulias, E., Varkaraki, E., Lymberopoulos, N., Christodoulou, C. N., & Karagiorgis, G. N. (2004). A review on water electrolysis. Tcjst, 4(2), 41-71.
Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 36(3), 307-326.
Rashid, M. D., Al Mesfer, M. K., Naseem, H., & Danish, M. (2015). Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology.
Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 39(3), 390-394.
Brauns, J., & Turek, T. (2020). Alkaline water electrolysis powered by renewable energy: A review. Processes, 8(2), 248.
Panigrahy, B., Narayan, K., & Rao, B. R. (2022). Green hydrogen production by water electrolysis: A renewable energy perspective. Materials today: proceedings, 67, 1310-1314.
Koponen, J. (2015). Review of water electrolysis technologies and design of renewable hydrogen production systems.
Amores, E., Sánchez, M., Rojas, N., & Sánchez-Molina, M. (2021). Renewable hydrogen production by water electrolysis. In Sustainable fuel technologies handbook (pp. 271-313). Academic Press.
Pilatowsky, I., Romero, R. J., Isaza, C. A., Gamboa, S. A., Sebastian, P. J., Rivera, W., ... & Rivera, W. (2011). Thermodynamics of fuel cells. Cogeneration fuel cell-sorption air conditioning systems, 25-36.
Li, X. (2005). Principles of fuel cells. CRC press.
Hosseinzadeh, E., Rokni, M., Rabbani, A., & Mortensen, H. H. (2013). Thermal and water management of low temperature proton exchange membrane fuel cell in fork-lift truck power system. Applied energy, 104, 434-444.
Wan, Z. M., Wan, J. H., Liu, J., Tu, Z. K., Pan, M., Liu, Z. C., & Liu, W. (2012). Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack. Applied Thermal Engineering, 42, 173-178.
Tibaquirá, J. E., Hristovski, K. D., Westerhoff, P., & Posner, J. D. (2011). Recovery and quality of water produced by commercial fuel cells. international journal of hydrogen energy, 36(6), 4022-4028.
Carrette, L., Friedrich, K. A., & Stimming, U. (2000). Fuel cells: principles, types, fuels, and applications. ChemPhysChem, 1(4), 162-193.
Giorgi, L., & Leccese, F. (2013). Fuel cells: Technologies and applications. The Open Fuel Cells Journal, 6(1).
Gülzow, E., & Schulze, M. (2004). Long-term operation of AFC electrodes with CO2 containing gases. Journal of Power Sources, 127(1-2), 243-251.
Tewari, A., Sambhy, V., Macdonald, M. U., & Sen, A. (2006). Quantification of carbon dioxide poisoning in air breathing alkaline fuel cells. Journal of power sources, 153(1), 1-10.
Gülzow, E. (1996). Alkaline fuel cells: a critical view. Journal of power sources, 61(1-2), 99-104.
Gülzow, E. (2004). Alkaline fuel cells. Fuel cells, 4(4), 251-255.
Roque Aguado et all. (2021) Hidrógeno y su almacenamiento. Universidade da Coruña, Servizo de Publicacións. DOI: https://doi.org/10.17979/spudc.9788497497985
Zhang, J., Tang, Y., Song, C., Zhang, J., & Wang, H. (2006). PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 C to 120 C. Journal of power sources, 163(1), 532-537.
Srinivasan, S. (2006). Fuel cells: from fundamentals to applications. Springer Science & Business media.
Ghosh, P. C., Wüster, T., Dohle, H., Kimiaie, N., Mergel, J., & Stolten, D. (2006). Analysis of single PEM fuel cell performances based on current density distribution measurement.
Shimpalee, S., Greenway, S., Spuckler, D., & Van Zee, J. W. (2004). Predicting water and current distributions in a commercial-size PEMFC. Journal of Power Sources, 135(1-2), 79-87.
D'Adamo, A., Riccardi, M., Locci, C., Romagnoli, M., & Fontanesi, S. (2020). Numerical simulation of a high current density PEM fuel cell (No. 2020-24-0016). SAE Technical Paper.
Candusso, D., Poirot-Crouvezier, J. P., Bador, B., Rullière, E., Soulier, R., & Voyant, J. Y. (2004). Determination of current density distribution in proton exchange membrane fuel cells. The European Physical Journal-Applied Physics, 25(1), 67-74.
C. Armenta-Déu (2024) Control Device for Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles. Sustainability. (under review)
Benmouiza, K., & Cheknane, A. (2018). Analysis of proton exchange membrane fuel cells voltage drops for different operating parameters. International journal of hydrogen energy, 43(6), 3512-3519.
Xu, Z., Qi, Z., He, C., & Kaufman, A. (2006). Combined activation methods for proton-exchange membrane fuel cells. Journal of power sources, 156(2), 315-320.
Van Der Linden, F., Pahon, E., Morando, S., & Bouquain, D. (2023). A review on the Proton-Exchange Membrane Fuel Cell break-in physical principles, activation procedures, and characterization methods. Journal of Power Sources, 575, 233168.
Qi, Z., & Kaufman, A. (2003). Quick and effective activation of proton-exchange membrane fuel cells. Journal of power sources, 114(1), 21-31.
Dey, T., Singdeo, D., Bose, M., Basu, R. N., & Ghosh, P. C. (2013). Study of contact resistance at the electrode–interconnect interfaces in planar type Solid Oxide Fuel Cells. Journal of Power Sources, 233, 290-298.
Chae, K. J., Choi, M., Ajayi, F. F., Park, W., Chang, I. S., & Kim, I. S. (2008). Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy & Fuels, 22(1), 169-176.
Guía de medidas de coches por segmento (Guide to car measurements by segment). Motor Blogs MAPFRE. https://www.motor.mapfre.es/coches/noticias-coches/guia-medidas-coches-segmento/ [Accessed online: 25/01/2024]
Electrolysis of water. https://en.wikipedia.org/wiki/Electrolysis_of_water [Accessed online: 25/01/2024]
Mehdi Mortazavi, Two-phase flow pressure drop in PEM fuel cell flow channel bends, International Journal of Multiphase Flow, Volume 143, 2021, 103759
A. N. A. Mubin et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 210 012052
¿Cuánto consumen los coches de hidrógeno? (Which is the hydrogen car consumption?). https://www.ro-des.com/blog/consumo-coches-hidrogeno-y-como-recargar/ [Accessed online: 25/01/2024]
Smart, John & Powell, Warren & Schey, Stephen. (2013). Extended Range Electric Vehicle Driving and Charging Behavior Observed Early in the EV Project. 10.4271/2013-01-1441.
C. Armenta-Déu, C. Rincón (2024) Reduction of GHG Emissions: Air Quality Improvement in Urban Areas. Current Research in Environmental Science and Ecology Letters (Accepted)(pending Volume and Issue assignment)
C. Armenta-Déu, L. Carmona, C. Rincón (2023) Analysis and Evaluation of the Electric Vehicle Carbon Footprint: Application to Environmental Urban Areas. Journal of Energy, Environment and Carbon Credits, 2023, 13(2); 27-47p
C. Armenta-Déu, A. Arenas (2023) Performance Analysis of Electric Vehicles with a Fuel Cell - Supercapacitor Hybrid System. Eng. 2023, 4(3), 2274-2293, https://doi.org/10.3390/eng4030130
C. Armenta-Déu (2024) Electric vehicle energy consumption for various driving patterns. Project FC-GER/01-24, Internal Report
https://miituo.com/blog/cuantos-kilometros-recorre-un-auto-en-la-ciudad-de-mexico/#:~:text=Un%20estudio%20de%20SinTráfico%2C%20plataforma,que%20tiene%20un%20uso%20regular. [Accessed online: 25/01/2024]
DOI: https://doi.org/10.37591/joaea.v10i3.7606
Refbacks
- There are currently no refbacks.