Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling of Overvoltage Protection by Lightning for a Grid-tied Solar Power System: A case of Vietnam

Ngo Nguyen Dong, Le Thi Thuy Hang

Abstract


Abstract

The solar power system has been widely developed due to its environmental friendliness and sustainability. Normally, PV panels would be preferable to set up on rooftop of building or free-standing in unsheltered areas. Therefore, the negative impacts on these systems from bad weather conditions, like storms and lightning, have been evident. Vietnam is located in the region of tropical monsoon weather, especially one of the three strongest thunderstorm areas in the world. And the overvoltage by lightning transient currents on a PV system not only could fault, damage to electrical/electronic equipments, but also effect adversely on the human health and economic. In this paper, our team has chosen the lightning strokes of single-peaked current forms and has simulated it under the equivalent engineering models by Matlab-Simulink. The obtained results allowed the analysis of overvoltage scenarios in grid-tied solar power system in Vietnam and the assessment of the surge protective device activities of Metal Oxide Varistors during overvoltage.

Keywords: Solar power, Metal Oxide Varistors, Overvoltage Protection, Lightning, Vietnam

Cite this Article
Ngo Nguyen Dong, Le Thi Thuy Hang Modeling of Overvoltage Protection by Lightning for a Grid tied Solar Power System: A case of Vietnam Journal of Alternate Energy Sources & Technologies .2020; 11 (2): 27-40 p.


Full Text:

PDF

References


Corré, W.; Schröder, J.; Verhagen, J. Energy use in conventional and organic farming systems. In Proceedings of the Open Meeting of the International Fertiliser Society, London, UK, 3 April 2003; London International Fertiliser Society: York, UK, 2003. ISBN 0-85310-147-7. ISSN 1466-1314. [Google Scholar]

VDI 3803-5. VDI-Richtlinie 3803-5: Air-Conditioning, System Requirements. Part 5: Heat Recovery Systems; Verein Deutscher Ingenieure e. V. (VDI), Ed.; Beuth Verlag GmbH: Berlin, Germany, 2013. [Google Scholar]

Recknagel, H.; Sprenger, E.; Albers, K.J. Taschenbuch für Heizung und Klimatechnik, Band 1; Deutscher Industrieverlag GmbH (DIV): München, Germany, 2015; p. 1035. ISBN 978-38356-7136-2. [Google Scholar]

Matthias, J. Wärmepumpen zur Stallbeheizung. In Baubriefe Landwirtschaft e. V. 47; Landwirtschaftsverlag GmbH: Münster-Hiltrup, Germany, 2009; pp. 70–72. ISBN 978-3-7843-3410-3. [Google Scholar]

Baumann, M.; Laue, H.-J.; Müller, P. Wärmepumpen—Heizen mit Umweltenergie, 4. Erweiterte und Vollständig Überarbeitete Auflage, BINE Informationsdienst; Verlag Solarpraxis AG: Berlin, Germany, 2007; ISBN 978-3-934595-60-6. [Google Scholar]

Lucia, U.; Simonetti, M.; Chiesa, G.; Grisolia, G. Ground-source pump system for heating and cooling: Review and thermodynamic approach. Renew. Sustain. Energy Rev. 2017, 70, 867–874. [Google Scholar] [CrossRef]

VDI 4645:2018-03. VDI-Guideline 4645: Heating Plants with Heat Pumps In Single-Family and Multi-Family Houses, Planning, Construction, Operation; Verein Deutscher Ingenieure e. V. (VDI), Ed.; Beuth Verlag GmbH: Berlin, Germany, 2018. [Google Scholar]

Tissen, C.; Menberg, K.; Bayer, P.; Blum, P. Meeting the demand: Geothermal heat supply rates for an urban quarter in Germany. Geother. Energy 2019, 7, 9. [Google Scholar] [CrossRef]

Ally, M.R.; Munk, J.D.; Baxter, V.D.; Gehl, A.C. Exergy analysis of a two-stage ground source heat pump with a vertical bore for residential space conditioning under simulated occupancy. Appl. Energy 2015, 155, 502–514. [Google Scholar] [CrossRef][Green Version]

Han, C.; Yu, X.B. Performance of a residential ground source heat pump system in sedimentary rock formation. Appl. Energy 2016, 164, 89–98. [Google Scholar] [CrossRef][Green Version]

Pasquier, P. Interpretation of the first hours of a thermal response test using the time derivative of the temperature. Appl. Energy 2018, 213, 56–75. [Google Scholar] [CrossRef]

Henk, J.L. Witte, Error analysis of thermal response tests. Appl. Energy 2013, 109, 302–311. [Google Scholar]

Pasquier, P.; Zarrella, A.; Marcotte, D. A multi-objetive optimization strategy to reduce correlation and uncertainty for thermal response test analysis. Geothermics 2019, 79, 176–187. [Google Scholar] [CrossRef]

Bandos, T.V.; Montero, Á.; Fernández de Córdoba, P.; Urchueguía, J.F. Improving parameter estimates obtained from termal response tests: Effect of ambient air temperature variations. Geothermics 2011, 40, 136–143. [Google Scholar] [CrossRef]

Choi, W.; Ooka, R. Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method. Appl. Energy 2015, 148, 476–488. [Google Scholar] [CrossRef]

ASHRAE. Geothermal energy. In ASHRAE Handbook Heating, Ventilating, and Air-Conditioning Applications; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2007; pp. 32.1–32.30. [Google Scholar]

Gehlin, S.; Hellström, G. Comparison of four models for thermal response test evaluation. ASHRAE Trans. 2003, 109, 131–142. [Google Scholar]

Leticia Bottazzi (2020). Análisis de Transferencia de Calor en un Intercambiador Geotérmico para Aplicaciones Energéticas (Heat Transfer Analysis in a Geothermal Heat Exchanger for Energy Applicactions). Doctoral Thesis. Chapter 6. UCM. Madrid. Spain

Carlos Armenta-Deu, Leticia Botazzi (2020) Thermal and Thermoelectric Generation Using Geothermal Energy Extraction Through Cogeneration System. Journal of Alternate Energy Sources and Technology. Volume 11, Issue 1, p.1-7

Philipp Hein, Ke Zhu, Anke Bucher, Olaf Kolditz, Haibing Shao (2016) Quantification of exploitable shallow geothermal energy by using Borehole Heat Exchanger coupled Ground Source Heat Pump systems Energy Conversion and Management. Volume 127, p.80-89

Saqib Javed , Jeffrey Spitler. Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers. Elsevier. 2016.

G. Ranalli a, L. Rybach B. Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples. Journal of Volcanology and Geothermal Research 148. 2005.

Jesse, A.M. Thermal Geophysics. Elsevier, Amsterdam.1990.

Willhite, G.P. Overall heat transfer coefficients in steam and hot water injection and production wells. J. Petr. Techn. 1509 - 1522. 1967.

C. L. Hapenciuc,1 T. Borca-Tasciuc,2 and I. N. Mihailescu. The relationship between the thermoelectric generator efficiency and the device engineering figure of merit Zd,eng. The maximum efficiency. 2017.AIP Advances.Volume 7, Issue 4 10.1063/ 1.4979328.

Yehea Ismail, Ahmed Al-Askalany. Thermoelectric Devices Cooling and Power Generation. 2014. Cornell University.

Kumar Gaurav and Sudhir K Pandey. Efficiency calculation of thermoelectric generator using temperature dependent material’s properties 2016.School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India, 175005.

Leticia Bottazzi (2020). Análisis de Transferencia de Calor en un Intercambiador Geotérmico para Aplicaciones Energéticas (Heat Transfer Analysis in a Geothermal Heat Exchanger for Energy Applicactions). Doctoral Thesis. Chapter 5. UCM. Madrid. Spain

http://www.hebeiltd.com.cn/peltier.datasheet/TEC1-12710.pdf, Célula de Peltier modelo TEC1-12710, datasheet.

Rafał Zybała, Maksymilian Schmidt, Kamil Kaszyca. Method and Apparatus for Determining Operational Parameters of Thermoelectric Modules. 2009.The Open Mechanical Engineering Journal, 3, 43-48 .

C. L. Hapenciuc,1 T. Borca-Tasciuc,2 and I. N. Mihailescu. The relationship between the thermoelectric generator efficiency and the device engineering figure of merit Zd,eng. The maximum efficiency. 2017.AIP Advances.Volume 7, Issue 4 10.1063/ 1.4979328.

https://www.idae.es/uploads/documentos/documentos_Documentacion_Basica_ Residencial_ Unido_c93da537.

https://www.codigotecnico.org/.

Leticia Bottazzi (2020). Análisis de Transferencia de Calor en un Intercambiador Geotérmico para Aplicaciones Energéticas (Heat Transfer Analysis in a Geothermal Heat Exchanger for Energy Applicactions). Doctoral Thesis. Chapter 7. UCM. Madrid. Spain


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Journal of Alternate Energy Sources and Technologies