Open Access Open Access  Restricted Access Subscription or Fee Access

Compact PV-PCM System with Heat Recovery Unit for Cogeneration System

Carlos Armenta-Deu

Abstract


This paper studies the feasibility of developing a compact system based on a photovoltaic panel with a heat exchanger embedded in a phase change material (PCM) attached to the rear side of the panel. The system generates electric energy at the PV panel, and thermal energy using the removed heat from the panel. The paper analyzes the improvement in PV panel efficiency and the Coefficient of Performance (COP) of the compact system. As a result of the heat recovering the efficiency of the PV panel increases from a peak value of 17.88% to a maximum of 20.15%. The COP of the compact system is of 36.3%, what shows the energy benefits of the cogeneration process.


Full Text:

PDF

References


Henry, C. H. (1980). Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. Journal of applied physics, 51(8), 4494–4500.

Harder, N. P., & Würfel, P. (2003). Theoretical limits of thermophotovoltaic solar energy conversion. Semiconductor science and technology, 18(5), S151.ç

Licht, S. (2001). Multiple band gap semiconductor/electrolyte solar energy conversion. The Journal of Physical Chemistry B, 105(27), 6281–6294.

Zdanowicz, T., Rodziewicz, T., & Zabkowska-Waclawek, M. (2005). Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations. Solar Energy Materials and Solar Cells, 87(1–4), 757–769.

Dupré, O., Vaillon, R., & Green, M. A. (2015). Physics of the temperature coefficients of solar cells. Solar energy materials and solar cells, 140, 92–100.

Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Procedia, 33, 311–321.

Gedik, E. (2016). Experimental investigation of module temperature effect on photovoltaic panels efficiency. Journal of Polytechnic, 19(4), 569–576.

Rahman, M. M., Hasanuzzaman, M., & Rahim, N. A. (2015). Effects of various parameters on PV-module power and efficiency. Energy Conversion and Management, 103, 348–358.

Hassan, Q., Jaszczur, M., Przenzak, E., & Abdulateef, J. (2016). The PV cell temperature effect on the energy production and module efficiency. Contemporary Problems of Power Engineering and Environmental Protection, 33, 1.

Thong, L. W., Murugan, S., Ng, P. K., & Sun, C. C. (2016). Analysis of photovoltaic panel temperature effects on its efficiency. System, 18(19).

Charalambous, P. G., Maidment, G. G., Kalogirou, S. A., & Yiakoumetti, K. (2007). Photovoltaic thermal (PV/T) collectors: A review. Applied thermal engineering, 27(2–3), 275–286.

Huang, B. J., Lin, T. H., Hung, W. C., & Sun, F. S. (2001). Performance evaluation of solar photovoltaic/thermal systems. Solar energy, 70(5), 443–448.

Tonui, J. K., & Tripanagnostopoulos, Y. (2007). Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable energy, 32(4), 623–637.

Odeh, S., & Behnia, M. (2009). Improving photovoltaic module efficiency using water cooling. Heat Transfer Engineering, 30(6), 499–505.

Prudhvi, P., & Sai, P. C. (2012, May). Efficiency improvement of solar PV panels using active cooling. In 2012 11th International Conference on Environment and Electrical Engineering (pp. 1093–1097). IEEE.

Tonui, J. K., & Tripanagnostopoulos, Y. (2008). Performance improvement of PV/T solar collectors with natural air flow operation. Solar energy, 82(1), 1–12.

C. Armenta-Déu (2021) PV Panel Efficiency Improvement Using a Hybrid PV-TEG Assembly System, International Journal of Embedded Systems and Emerging Technologies, Volume 7, Issue 2, pp.12–26. doi: https://doi.org/10.37628/jeset.v7i2.1566

Tripanagnostopoulos, Y., Nousia, T. H., Souliotis, M., & Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar energy, 72(3), 217–234.

Chandel, S. S., & Agarwal, T. (2017). Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renewable and Sustainable Energy Reviews, 73, 1342–1351.

C. Armenta-Déu and L. Mosquera (2021) Heat Sink-PCM Device for PV Efficiency Improvement, Journal of Thermal Engineering and Applications, Volume 8, Issue 2, pp. 35–48. doi: https://doi.org/10.37591/jotea.v8i2.5883

P. H. Biwole, P. Eclache, F. Kuznik, Phase-change materials to improve solar panel’s performance, Energy Build, vol. 62, 59–67p, 2013.

R. Stropnik, U. Stritih, Increasing the efficiency of PV panel with the use of PCM, Renew. Energy, vol. 97, 671–679p, 2016.

Stritih, U. (2016). Increasing the efficiency of PV panel with the use of PCM. Renewable Energy, 97, 671–679.

Ma, T., Yang, H., Zhang, Y., Lu, L., & Wang, X. (2015). Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook. Renewable and Sustainable Energy Reviews, 43, 1273–1284.

Xu, H., Zhang, C., Wang, N., Qu, Z., & Zhang, S. (2020). Experimental study on the performance of a solar photovoltaic/thermal system combined with phase change material. Solar Energy, 198, 202–211.

Maffezzoni, P., Codecasa, L., & D'Amore, D. (2009). Modeling and simulation of a hybrid photovoltaic module equipped with a heat-recovery system. IEEE Transactions on Industrial Electronics, 56(11), 4311–4318.

A. Karafil, Temperature and Solar Radiation Effects on Photovoltaic Panel Power, J. New Results Sci., vol. 5, no. 12, 48–58p, 2016.

Neises, T. W., Klein, S. A., & Reindl, D. T. (2012). Development of a thermal model for photovoltaic modules and analysis of NOCT guidelines. Journal of solar energy engineering, 134(1).

Mora Segado, P., Carretero, J., & Sidrach‐de‐Cardona, M. (2015). Models to predict the operating temperature of different photovoltaic modules in outdoor conditions. Progress in Photovoltaics: Research and Applications, 23(10), 1267–1282.

Alonso, M. C., Balenzategui, J. L., & Chenlo, F. (2020, November). On the NOCT determination of PV solar modules. In Sixteenth European Photovoltaic Solar Energy Conference (pp. 2386–2389). Routledge.

García, M. A., & Balenzategui, J. L. (2004). Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations. Renewable energy, 29(12), 1997–2010.

Olukan, T. A., & Emziane, M. (2014). A comparative analysis of PV module temperature models. Energy Procedia, 62, 694–703.

Mattei, M., Notton, G., Cristofari, C., Muselli, M., & Poggi, P. (2006). Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renewable energy, 31(4), 553–567.

Dubey, B., Tiwari, D., & Kumar, R. (2016, March). Effect of temperature variations over Photovoltaic modules efficiency of different technologies at NOCT. In 2016 IEEE Students' Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1–5). IEEE.

Virtuani, A., Pavanello, D., & Friesen, G. (2010, September). Overview of temperature coefficients of different thin film photovoltaic technologies. In 25th European photovoltaic solar energy conference and exhibition/5th World conference on photovoltaic energy conversion (Vol. 4, pp. 3–83).

Skoplaki, E., Boudouvis, A. G., & Palyvos, J. A. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar energy materials and solar cells, 92(11), 1393–1402.

Chakraborty, S., & Kumar, R. (2015). Comparative analysis of NOCT values for mono and multi C-Si PV modules in Indian climatic condition. World Journal of Engineering.

de Oliveira Santos, L., de Carvalho, P. C. M., & de Oliveira Carvalho Filho, C. (2021). Photovoltaic cell operating temperature models: a review of correlations and parameters. IEEE Journal of Photovoltaics, 12(1), 179–190.

Antonio Luque and Steven Hegedus (Editors). Handbook of Photovoltaic Science and Engineering. Ed. John Wiley and Sons, 1st ed. (2003). Print ISBN: 9780471491965 |Online ISBN: 9780470014004 |DOI:10.1002/0470014008

Armenta-Déu, C. (2021) Analysis of the Performance of a PV-PCM System in Variable Solar Radiation Conditions, Journal of Alternate Energy Sources and Technologies, Volume 12, Issue 1, pp. 1–20, doi: https://doi.org/10.37591/joaest.v12i1.4423

Armenta-Déu, C. (2020) Hybrid PV-PCM System To Increase Efficiency, Volume 11, Issue 2, pp-15–26, doi: https://doi.org/10.37591/joaest.v11i2.3851

M. Mumtaz, A. Khana, R. Saidura, F. A. Al-Sulaimana (2017) A review for phase change materials (PCMs) in solar absorption refrigeration systems, Renewable and Sustainable Energy Reviews, vol. 76, pp. 105–137

H. Hussein, A. H. Abed, A. R. Abdulmunem. An experimental investigation of using aluminum foam matrix integrated with paraffin wax as a thermal storage material in a solar heater, The 2nd Sustainable & Renewable Energy Conference, 2018

A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry. 36 (8): 1627–1639p, 1964.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Alternate Energy Sources and Technologies