Open Access Open Access  Restricted Access Subscription or Fee Access

Thermal Behavior of Biomass Ashes with the Influence of Additives: A Critical Review

Alessandro Blasi

Abstract


The gasification of biomass is undoubtedly one of the most promising processes for sustainable energy and heat production. The formation of low-melting ashes can compromise the proper functioning of plants. To address potential risks of ash fusion and agglomerate formation in high-temperature zones that may occur in downdraft reactor configurations, a detailed literature review on the use of additives to counteract the risk of ash formation and deposition has been carried out. The reduction of ashes through chemical reaction proves to be the most effective methodology. Additives are grouped based on their reactive compound content, such as Al-based additives, Al-silicates, sulfur-based additives, calcium-based additives, and phosphorus-based additives. Additives with strong chemical adsorption and reaction capabilities can minimize sintering, deposition, and slagging of ashes during biomass gasification processes. The actual effectiveness of chemical reaction mechanisms is closely related to interactions among active components K-Al-Si, K-Ca-Si, and K-Ca-P. Additives' abilities to mitigate ash-related problems are strongly influenced by various parameters, such as mass/molar ratios between reactive components in additives and problematic elements in biomass ashes, as well as the reaction atmosphere and gasification technology. The bibliographic monitoring also highlighted the current trend towards using waste materials as additives, primarily based on carbonates, oxides, silicates, and aluminates.

 


Full Text:

PDF

References


Demirbas, M. F.; Balat, M.; Balat, H. Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management 2009, 50, (7), 1746-1760.

Frandsen, F. J.; Utilizing biomass and waste for power production - a decade of contributing to the understanding, interpretation and analysis of deposits and corrosion products. Fuel 2005, 84, (10), 1277-1294.

Gavrilescu, M.; Biomass power for energy and sustainable development, Environmental Engineering and Management Journal, October 2008, Vol.7, No.5, 617-640, http://omicron.ch.tuiasi.ro/EEMJ/

Antar M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Donald L. Smith, Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization, Renewable and Sustainable Energy Reviews, Volume 139, 2021, 110691, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2020.110691.

Ji, J.; Nananukul, N.; Supply chain for sustainable renewable energy from biomass, International Journal of Logistics Systems and Management, Vol. 33, No. 4, 2019, pp 568-590, https://doi.org/10.1504/IJLSM.2019.101798

Tezer, O.; Karabağ, N.; Öngen, A.; Çolpan, C. O.; Ayol, A. Biomass gasification for sustainable energy production: A review, International Journal of Hydrogen Energy, Volume 47, Issue 34, 2022, Pages 15419-15433, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.02.158.

Akbarian, A.; Andooz, A.; Kowsari, E.; Ramakrishna, S.; Asgari, S.; Cheshmeh, Z. A. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy, Bioresource Technology, Volume 362, 2022, 127774, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2022.127774.

Safarian, S.; Unnthorsson, R.; Richter, C. Techno-Economic Analysis of Power Production by Using Waste Biomass Gasification, Journal of Power and Energy Engineering Vol.08 No.06(2020), Article ID:100837,8 pages, 10.4236/jpee.2020.86001

Sadh, P. K.; Chawla, P.; Kumar, S.; Das, A.; Kumar, R.; Bains, A.; Sridhar, K.; Duhan, J. S.; Sharma, M. Recovery of agricultural waste biomass: A path for circular bioeconomy, Science of The Total Environment, Volume 870, 2023, 161904, ISSN 0048-9697.

Bressanin, J.M.; Klein, B.C.; Chagas, M.F.; Watanabe, M.D.B.; Sampaio, I.L.d.M.; Bonomi, A.; Morais, E.R.d.; Cavalett, O. Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries. Energies 2020, 13, 4576. https://doi.org/10.3390/en13174576.

Brown, R.C. The Role of Pyrolysis and Gasification in a Carbon Negative Economy. Processes 2021, 9, 882. https://doi.org/10.3390/pr9050882.

Ruiz, J. A.; Juárez, M. C.; Morales, M. P.; Muñoz, P.; Mendívil, M.A. Biomass gasification for electricity generation: Review of current technology barriers, Renewable and Sustainable Energy Reviews, Volume 18, 2013, Pages 174-183, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2012.10.021.

Asadullah, M. Barriers of commercial power generation using biomass gasification gas: A review, Renewable and Sustainable Energy Reviews, Volume 29, 2014, Pages 201-215, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2013.08.074.

Shahbaz, M.; Yusup, S.; Inayat, A.; Patrick, D. O.; Ammar, D. The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: A review, Renewable and Sustainable Energy Reviews, Volume 73, 2017, Pages 468-476, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2017.01.153.

Siddiqui, M.Z., Sheraz, M., Toor, U.A. Recent approaches on the optimization of biomass gasification process parameters for product H2 and syngas ratio: a review. Environ Dev Sustain (2022). https://doi.org/10.1007/s10668-022-02279-6.

Yao, X.; Hu, Y.; Ge, J.; Ma, X.; Mao, J.; Sun, L.; Xu, K.; Xu, K. A comprehensive study on influence of operating parameters on agglomeration of ashes during biomass gasification in a laboratory-scale gasification system, Fuel, Volume 276, 2020, 118083, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2020.118083.

Steenari, B. M.; Lindqvist, O. High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite; Biomass and Bioenergy. 1998, 14, (1), 67-76.

Ge, Z.; Cao, X.; Zha, Z.; Ma, Y.; Zeng, M.; Wu, Y.; Li, F.; Zhang, H. The sintering analysis of biomass waste ash based on the in-situ exploration and thermal chemical calculation in the gasification process, Combustion and Flame, Volume 245, 2022, 112381, ISSN 0010-2180, https://doi.org/10.1016/j.combustflame.2022.112381.

Yao, X.; Zhao, Z.; Xu, K.; Zhou, H. Determination of ash forming characteristics and fouling/slagging behaviours during gasification of masson pine in a fixed-bed gasifier, Renewable Energy, Volume 160, 2020, Pages 1420-1430, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2020.06.008.

Hong, Q.; Liu, X.; Tang, L.; Chen, X., Progress in physicochemical properties of ash/slag from co-gasification of agroforestry waste biomass and coal, Journal of Fuel Chemistry and Technology, Volume 50, Issue 6, 2022, Pages 641-651, ISSN 1872-5813, https://doi.org/10.1016/S1872-5813(21)60197-4.

Kong, L.; Bai, J.; Li, W. Viscosity-temperature property of coal ash slag at the condition of entrained flow gasification: A review, Fuel Processing Technology, Volume 215, 2021, 106751, ISSN 0378-3820, https://doi.org/10.1016/j.fuproc.2021.106751.

Ge, Z. Cao, X., Zha, Z.; Ma, Y.; Zeng, M.; Wu, K.; Chu, S.; Tao, Y.; Zhang, H. The mineral transformation and molten behaviors of biomass waste ashes in gasification-melting process, Fuel Processing Technology, Volume 226, 2022, 107095, ISSN 0378-3820, https://doi.org/10.1016/j.fuproc.2021.107095.

Yao, X.; Zhao, Z.; Chen, S.; Zhou, H.; Xu, K. Migration and transformation behaviours of ash residues from a typical fixed-bed gasification station for biomass syngas production in China, Energy, Volume 201, 2020, 117646, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2020.117646.

Arvelakis, S.; Koukios, E. G., Physicochemical upgrading of agroresidues as feedstocks for energy production via thermochemical conversion methods. Biomass and Bioenergy 2002, 22, (5), 331-348.

Tran, K.-Q.; Lisa, K.; Steenari, B.-M.; Lindqvist, O., A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector. Fuel 84, (2-3), 169-175.

Tobiasen, L.; Skytte, R.; Pedersen, L. S.; Pedersen, S. T.; Lindberg, M. A., Deposit characteristic after injection of additives to a Danish straw-fired suspension boiler. Fuel Processing Technology 2007, 88, (11-12), 1108-1117.

Elled, A. L.; Davidsson, K. O.; Åmand, L. E., Sewage sludge as a deposit inhibitor when co-fired with high potassium fuels. Biomass and Bioenergy 34, (11), 1546-1554.

Wu, H.; Glarborg, P.; Frandsen, F. J.; Dam-Johansen, K.; Jensen, P. A., Dust-Firing of Straw and Additives: Ash Chemistry and Deposition Behavior. Energy & Fuels 2011, 25, (7), 2862-2873.

Llorente, M. J. F.; Arocas, P. D.; Nebot, L. G.; García, J. E. C., The effect of the addition of chemical materials on the sintering of biomass ash. Fuel 2008, 87, (12), 2651-2658.

Cao, X.; Ge, Z.; Liu, X.; Wu, H.; Yu, G. Enhancement of ash properties on alkali and alkaline earth metal retention by coal additives in the gasification condition, Fuel, Volume 341, 2023, 127023, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2022.127023.

Yu, J.; Gong, Y.; Wei, J.; Ding, L.; Song, X.; Yu, G. Promoting effect of biomass ash additives on high-temperature gasification of petroleum coke: Reactivity and kinetic analysis, Journal of the Energy Institute, Volume 93, Issue 4, 2020, Pages 1364-1372, ISSN 1743-9671, https://doi.org/10.1016/j.joei.2019.12.006.

Lebendig, F.; Funcia, I.; Pérez-Vega, R.; Müller, M. Investigations on the Effect of Pre-Treatment of Wheat Straw on Ash-Related Issues in Chemical Looping Gasification (CLG) in Comparison with Woody Biomass. Energies 2022, 15, 3422. https://doi.org/10.3390/en15093422.

Li, F.; Yu, B.; Li, J.; Wang, Z.; Guo, M.; Fan, H.; Wang, T.; Fang, Y. Exploration of potassium migration behavior in straw ashes under reducing atmosphere and its modification by additives, Renewable Energy, Volume 145, 2020, Pages 2286-2295, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2019.07.141.

Fan, Y.; Lyu, Q.; Zhu, Z.; Zhang, H. The impact of additives upon the slagging and fouling during Zhundong coal gasification, Journal of the Energy Institute, Volume 93, Issue 4, 2020, Pages 1651-1665, ISSN 1743-9671, https://doi.org/10.1016/j.joei.2020.02.003.

Benny, M., Suraj, P., Arun, P. et al. Agglomeration behavior of lignocellulosic biomasses in fluidized bed gasification: a comprehensive review. J Therm Anal Calorim (2023). https://doi.org/10.1007/s10973-023-12013-7.

Li, J.; Chang, G.; Song, K.; Hao, B.; Wang, C.; Zhang, J.; Yue, G.; Hu, S. Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity, Renewable Energy, Volume 203, 2023, Pages 434-444, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2022.12.037.

Knudsen, J. N.; Jensen, P. A.; Dam-Johansen, K., Transformation and Release to the Gas Phase of Cl, K, and S during Combustion of Annual Biomass. Energy & Fuels 2004, 18, (5), 1385-1399.

Frandsen, F. J.; van Lith, S. C.; Korbee, R.; Yrjas, P.; Backman, R.; Obernberger, I.; Brunner, T.; Jöller, M., Quantification of the release of inorganic elements from biofuels. Fuel Processing Technology 2007, 88, (11-12), 1118-1128.

Li, F.; Liu, Q.; Li, M.; Fang, Y. Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics, Energy, Volume 150, 2018, Pages 142-152, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2018.02.137.

Niu, M.; Fu, Y.; Liu, S. Mineralogical Characterization of Gasification Ash with Different Particle Sizes from Lurgi Gasifier in the Coal-to-Synthetic Natural Gas Plant, ACS Omega 2022, 7, 10, 8526–8535, 2022, https://doi.org/10.1021/acsomega.1c06336.

Priscak, J.; Fürsatz, K.; Kuba, M.; Skoglund, N.; Benedikt, F.; Hofbauer, H. Investigation of the Formation of Coherent Ash Residues during Fluidized Bed Gasification of Wheat Straw Lignin. Energies 2020, 13, 3935. https://doi.org/10.3390/en13153935.

Wang, L.; Trninic, M.; Skreiberg, Ø.; Gronli, M.; Considine, R.; Antal, M. J., Is Elevated Pressure Required To Achieve a High Fixed-Carbon Yield of Charcoal from Biomass? Part 1: Round-Robin Results for Three Different Corncob Materials. Energy & Fuels 2011, 25, (7), 3251-3265.

Thy, P.; Jenkins, B. M.; Grundvig, S.; Shiraki, R.; Lesher, C. E., High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 2006 85, (5-6), 783-795.

Piotrowska, P.; Zevenhoven, M.; Hupa, M.; Giuntoli, J.; de Jong, W., Residues from the production of biofuels for transportation: Characterization and ash sintering tendency. Fuel Processing Technology 2011, Vol-105, pages-37-45.

Thy, P.; Jenkins, B. M.; Lesher, C. E.; Grundvig, S., Compositional constraints on slag formation and potassium volatilization from rice straw blended wood fuel. Fuel Processing Technology 2006, 87, (5), 383-408.

Pettersson, A.; Amand, L.-E.; Steenari, B.-M., Chemical fractionation for the characterisation of fly ashes from cocombustion of biofuels using different methods for alkali reduction. Fuel 2009, 88, (9), 1758-1772.

Wu, H.; Glarborg, P.; Frandsen, F. J.; Dam-Johansen, K.; Jensen, P. A., Dust-Firing of Straw and Additives: Ash Chemistry and Deposition Behavior. Energy & Fuels 2011, 25, (7), 2862-2873.

Theis, M.; Mueller, C.; Skrifvars, B.-J.; Hupa, M.; Tran, H., Deposition behaviour of model biofuel ash in mixtures with quartz sand. Part 1: Experimental data. Fuel 2006, 85, (14-15), 1970-1978

Benson, S.A., Sondreal, E.A. (2002). Ash-Related Issues During Combustion and Gasification. In: Gupta, R.P., Wall, T.F., Baxter, L. (eds) Impact of Mineral Impurities in Solid Fuel Combustion. Springer, Boston, MA. https://doi.org/10.1007/0-306-46920-0_1

Bryers, R. W., Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Progress in Energy and Combustion Science 1996, 22, (1), 29-120.

Xu, L.; Namkung, H.; Kwon, H.; Kim, H. Determination of fouling characteristics of various coals under gasification condition, Journal of Industrial and Engineering Chemistry, Volume 15, Issue 1, 2009, Pages 98-102, ISSN 1226-086X, https://doi.org/10.1016/j.jiec.2008.09.004.

Moradian, F. Ash Behavior in Fluidized-Bed Combustion and Gasification of Biomass and Waste Fuels, Thesis for the Degree of Doctor of Philosophy, 2016, Swedish Centre for Resource Recovery University of Borås, SE-501 90 Borås, Sweden.

Zhang, S.; Sun, S.; Gao, N.; Quan, C.; Wu, C. Effect of auto thermal biomass gasification on the sintering of simulated ashes, Applications in Energy and Combustion Science, Volume 9, 2022, 100054, ISSN 2666-352X, https://doi.org/10.1016/j.jaecs.2021.100054.

Oboirien, B. O.; Engelbrecht, A. D.; North, B. C.; Eramus, R. M.; Falcon, R.; Mineral–Char Interaction during Gasification of High-Ash Coals in Fluidized-Bed Gasification, Energy Fuels 2011, 25, 11, 5189–5199, Publication Date: September 27, 2011, https://doi.org/10.1021/ef201056j.

Fryda, L.E.; Panopoulos, K. D.; Kakaras, E. Agglomeration in fluidised bed gasification of biomass, Powder Technology (2007), 181(3), Pages- 307-320.

Boström, D.; Skoglund, N.; Grimm, A.; Boman, C.; Öhman, M.; Broström, M.; Backman, R., Ash Transformation Chemistry during Combustion of Biomass. Energy Fuels 2011. 26, (1), 85-93.

Grimm, A.; Skoglund, N.; Bostrom, D.; Ohman, M., Bed Agglomeration Characteristics in Fluidized Quartz Bed Combustion of Phosphorus-Rich Biomass Fuels. Energy Fuels 2011, 25, (3), 937-947.

Hedayati, A.; Falk, J.; Borén, E.; Lindgren, R.; Skoglund, N.; Boman, C.; Öhman, M. Ash Transformation during Fixed-Bed Combustion of Agricultural Biomass with a Focus on Potassium and Phosphorus, Energy Fuels 2022, 36, 7, 3640–3653, Publication Date: March 21, 2022, https://doi.org/10.1021/acs.energyfuels.1c04355

Grimm, A. Experimental Studies of Ash Transformation Processes in Combustion of Phosphorus-Rich Biomass Fuels, Doctoral Thesis Energy Engineering Department of Engineering Sciences & Mathematics, Luleå University of Technology, Sweden, 2012.

Wang, L.; Hustad, J. E.; Skreiberg, Ø.; Skjevrak, G.; Grønli, M. A critical review on additives to reduce ash related operation problems in biomass combustion applications, Energy Procedia 20 (2012) 20 – 29.

Gupta, S.; De, S. An experimental investigation of high-ash coal gasification in a pilot-scale bubbling fluidized bed reactor, Energy, Volume 244, Part B, 2022, 122868, ISSN 0360-5442 https://doi.org/10.1016/j.energy.2021.122868.

Mohammadi, A.; Anukam, A. The Technical Challenges of the Gasification Technologies Currently in Use and Ways of Optimizing Them: A Review, IntechOpen. doi: 10.5772/intechopen.102593

Furuvik, N. C.; Ivarsdatter, S. Modelling of ash melts in gasification of biomass, Doctoral Thesis at the University of South-Eastern Norway, 2022, Process, Energy and Automation Engineering.

Serrano, D.; Kwapinska, M.; Sánchez-Delgado, S.; Leahy, J. J. Fly Ash Characterization from Cynaracardunculus L. Gasification, Energy Fuels 2018, 32, 5, 5901–5909, 2018, https://doi.org/10.1021/acs.energyfuels.7b04050

Tobiasen, L.; Skytte, R.; Pedersen, L. S.; Pedersen, S. T.; Lindberg, M. A., Deposit characteristic after injection of additives to a Danish straw-fired suspension boiler. Fuel Processing Technology 2007, 88, (11-12), 1108-1117.

Trubetskaya, A. Reactivity Effects of Inorganic Content in Biomass Gasification: A Review. Energies 2022, 15, 3137. https://doi.org/10.3390/en15093137

Wang, X.; Liu, A.; Zhao, Z.; Li, H. Experimental and Model Study on Raw Biomass Gasification Syngas Conditioning in a Molten NaOH-Na2CO3 Mixture. Energies 2020, 13, 3668. https://doi.org/10.3390/en13143668.

Åmand, L.-E.; Leckner, B.; Eskilsson, D.; Tullin, C., Deposits on heat transfer tubes during co-combustion of biofuels and sewage sludge. Fuel 85, (10-11), 1313-1322.

Jiménez, S.; Ballester, J., Influence of operating conditions and the role of sulfur in the formation of aerosols from biomass combustion. Combustion and Flame 2005, 140, (4), 346-358.

Li, F.; Yang, Z.; Wang, Y.; Liu, G.; Xu, M.; Fan, H.; Zhao, W.; Zhao, C.; Wang, T.; Fang, Y. Understanding Ash Sintering Variation Behaviors of Low-Rank Coals with Municipal Sludge Addition Based on Mineral Interactions, CS Omega 2022, 7, 12, 10588–10598, 2022, https://doi.org/10.1021/acsomega.1c07138

Mishra, A. K.; Singh, R. N. and Mishra, P. P. Effect of Biomass Gasification on Environment. Mesop. environ. j., 2015, Vol. 1, No.4, pp. 39-49.

Zhang, D.; Bai, B.; Wang, R.; Kou, J.; Wei, W.; Jin, H.; Guo, L. Experiment and simulation study on mechanism and solution of ash agglomeration in supercritical water gasification of coal for hydrogen production, Fuel, Volume 290, 2021, 120016, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2020.120016.

Zhang, D.; Lu, L.; Ren, Y.; Jin, H.; Wei, W.; Cheng, Z.; Guo, L. K2CO3-catalytic supercritical water gasification of coal with NaAlO2 addition to inhibit ash agglomeration and decrease the volatility of alkali metals, Fuel, Volume 303, 2021, 121312, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2021.121312.

Zhang, W.; Huang, S.; Wu, S.; Wu, Y.; Gao, J.; Ash fusion characteristics and gasification activity during biomasses co-gasification process, Renewable Energy, Volume 147, Part 1, 2020, Pages 1584-1594, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2019.09.058.

Broström, M.; Kassman, H.; Helgesson, A.; Berg, M.; Andersson, C.; Backman, R.; Nordin, A., Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler. Fuel Processing Technology 2007, 88, (11-12), 1171-1177.

Aho, M., Reduction of chlorine deposition in FB boilers with aluminium-containing additives. Fuel 2001, 80, (Compendex), 1943-1951.

Najser, J.; Buryan, P.; Skoblia, S.; Frantik, J.; Kielar, J.; Peer, V. Problems Related to Gasification of Biomass—Properties of Solid Pollutants in Raw Gas. Energies 2019, 12, 963. https://doi.org/10.3390/en12060963

Santos, S. M.; Assis, A. C.; Gomes, L.; Nobre, C.; Brito, P. Waste Gasification Technologies: A Brief Overview, Waste 2023, 1, 140–165. https://doi.org/10.3390/waste1010011;

Yao, X.; Zhao, Z.; Li, J.; Zhang, B.; Zhou, H.; Xu, K. Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass, Energy, Volume 198, 2020, 117367, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2020.117367.

Li, G.; Xu, S.; Zhao, X.; Sun, R.; Wang, C.; Liu, K.; Mao, Q.; Che, D. Investigation of chemical composition and morphology of ash deposition in syngas cooler of an industrialized two-stage entrained-flow coal gasifier, Energy, Volume 194, 2020, 116901, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2020.116901.

Zhang, L.; Wang, J.; Song, X.; Bai, Y.; Yao, M.; Yu, G. Influence of biomass ash additive on fusion characteristics of high-silicon-aluminum coal ash, Fuel, Volume 282, 2020, 118876, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2020.118876.

Steenari, B.-M.; Lundberg, A.; Pettersson, H.; Wilewska-Bien, M.; Andersson, D., Investigation of Ash Sintering during Combustion of Agricultural Residues and the Effect of Additives. Energy & Fuels 2009, 23, (11), 5655-5662.

Dahlin, R. S.; Dorminey, J. R.; Peng, W.; Leonard, R. F.; Vimalchand, P. Preventing Ash Agglomeration during Gasification of High-Sodium Lignite, Energy Fuels 2009, 23, 2, 785–793, 2008, https://doi.org/10.1021/ef800568z

Boström, D.; Grimm, A.; Boman, C.; Björnbom, E.; Öhman, M. Influence of Kaolin and Calcite Additives on Ash Transformations in Small-Scale Combustion of Oat, nergy Fuels 2009, 23, 10, 5184–5190, 2009, https://doi.org/10.1021/ef900429

Uberoi, M.; Punjak, W. A.; Shadman, F., The kinetics and mechanism of alkali removal from flue gases by solid sorbents. Progress in Energy and Combustion Science 1990, 16, (4), 205-211.

Buchireddy, P. R.; Bricka, R. M.; Rodriguez, J.; Holmes, W. Biomass Gasification: Catalytic Removal of Tars over Zeolites and Nickel Supported Zeolites, Energy Fuels 2010, 24, 4, 2707–2715, 2010, https://doi.org/10.1021/ef901529d

Dìaz-Somoano, M.; Lòpez-Antòn, M. A.; Martìnez-Tarazona, M. R. Trace element removal from hot gasification flue gases using solid sorbents, Global NEST Journal, Vol 8, No 2, pp 137-145, 2006.

Łach, M.; Grela, A.; Bajda, T.; Mierzwiński, D.; Komar, N.; Mikuła, J. Production of Zeolite Sorbents from Burning and Co-burning Biomass with Coal, E3S Web of Conferences 44, 00097 (2018).

Kyi, S.; Chadwick, B. L., Screening of potential mineral additives for use as fouling preventatives in Victorian brown coal combustion. Fuel 1999, 78, (Compendex), 845-855.

Wang, L.; Skjevrak, G.; Hustad, J. E.; Grønli, M. G., Sintering characteristics of sewage sludge ashes at elevated temperatures. Fuel Processing Technology 2012, 96, (0), 88-97.

Aho, M.; Yrjas, P.; Taipale, R.; Hupa, M.; Silvennoinen, J., Reduction of superheater corrosion by co-firing risky biomass with sewage sludge. Fuel 89, (9), 2376-2386.

Roberts, L. J.; Mason, P.E.; Jones, J. M.; Gale, W. F.; Williams, A.; Ellul, C. Investigating the impact of an Al-Si additive on the resistivity of biomass ashes, Fuel Processing Technology, Volume 178, 2018, Pages 13-23, ISSN 0378-3820, https://doi.org/10.1016/j.fuproc.2018.05.018.

Jiménez, S.; Ballester, J., Formation of alkali sulphate aerosols in biomass combustion. Fuel 2007, 86, (4), 486-493.

Aho, M.; Vainikka, P.; Taipale, R.; Yrjas, P., Effective new chemicals to prevent corrosion due to chlorine in power plant superheaters. Fuel 2008, 87, (6), 647-654.

Dayton, D. C.; Frederick, W. J. Direct Observation of Alkali Vapor Release during Biomass Combustion and Gasification. 2. Black Liquor Combustion at 1100 °C, Energy Fuels 1996, 10, 2, 284–292, 1996, https://doi.org/10.1021/ef950210a

Hindiyarti, L.; Frandsen, F.; Livbjerg, H.; Glarborg, P.; Marshall, P. An exploratory study of alkali sulfate aerosol formation during biomass combustion, Fuel, Volume 87, Issues 8–9, 2008, Pages 1591-1600, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2007.09.001.

Gall, D.; Pushp, M.; Larsson, A.; Davidsson, K.; Pettersson, J. B. C. Online Measurements of Alkali Metals during Start-up and Operation of an Industrial-Scale Biomass Gasification Plant, Energy Fuels 2018, 32, 1, 532–541, 2017, https://doi.org/10.1021/acs.energyfuels.7b0313

Scandrett, L A, and Cliff, R. Thermodynamics of alkali removal from coal-derived gases. United Kingdom: N. p., 1984. Web.

Thy, P.; Lesher, C. E.; Jenkins, B. M., Experimental determination of high-temperature elemental losses from biomass slag. Fuel 2000, 79, (6), 693-700.

Risnes, H.; Fjellerup, J., Henriksen, U.; Moilanen, A.; Norby, P.; Papadakis, K.; Posselt, D.; Sørensen, L. H. Calcium addition in straw gasification, Fuel, Volume 82, Issue 6, 2003, Pages 641-651, ISSN 0016-2361, https://doi.org/10.1016/S0016-2361(02)00337-X.

Guo, Q.; Yu, F.; Qiu, Y.; Hu, Y.; Che, L.; Dong, B., Zhou, N.; Jiao, L. Exploring the roles of potassium and calcium additives in corn straw gasification performance and SO2 release behavior, Journal of the Energy Institute, Volume 108, 2023, 101140, ISSN 1743-9671, https://doi.org/10.1016/j.joei.2022.10.018.

Jiang, M. Q.; Zhou, R.; Hu, J., Wang, F. C.; Wang, J. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: Influences of calcium species, Fuel, Volume 99, 2012, Pages 64-71 ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2012.04.007.

He, Z.; Saw, W. L.; van Eyk, P. J.; Nathan, G. J.; Ashman, P. J. Effect of Calcium and Phosphorus on Interactions between Quartz Sand and K-Salt-Doped Wood under Both Steam Gasification and Combustion Atmospheres, Energy Fuels 2020, 34, 3, 3210–3222, 2020, https://doi.org/10.1021/acs.energyfuels.9b02992

Hedayati, A.; Sefidari, H.; Boman, C., Skoglund, N.; Kienzl, N.; Öhman, M. Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus, Fuel Processing Technology, Volume 217, 2021, 106805, ISSN 0378-3820, https://doi.org/10.1016/j.fuproc.2021.106805.

Hannl, T.K., Sefidari, H., Kuba, M., Skoglund N., Öhman M., Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation. Biomass Conv. Bioref. 11, 57–68 (2021). https://doi.org/10.1007/s13399-020-00772-4

Wang C, Ling X, Wu C, He C, Gui B, Sun W. Evolution of phosphorus with the promotion of KOH in supercritical water gasification of dewatered cyanobacteria from ion perspective. Chemosphere. 2023 Jun;327:138466. doi: 10.1016/j.chem


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Alternate Energy Sources and Technologies