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INTRODUCTION 

 

Designing of control strategies for discrete time 

nonlinear systems is an active area of research 

since last decade. Inclination of researchers 

towards the designing of discrete time 

controllers is mainly due to the facts that now a 

days controller are mainly implemented on DSP 

chips and digital computers [1–3]. In discrete 

time systems information about the system are 

available only at specific time instances and 

control inputs can only be changed at these time 

instances. Due to this finite time delay in control 

computation discrete time controller design is 

more complicated in comparison to its 

continuous time counterpart. [1]  

 

Sliding mode control (SMC) is normally used 

controlling strategy for uncertain towards 

uncertainties and disturbances along with order  

 

reduction. The SMC is variable structure control 

which drives state trajectories toward a specific 

hyperplane and maintains the trajectories sliding 

on hyperplane until the origin of the state space 

is reached [16]. Feasibility of this scheme is the 

requirement of infinite rate switching control 

which is not possible in case discrete time 

systems. This problem caused by discrete-time 

implementation of SMC algorithms, has been 

addressed by several researchers. Few effective 

strategies for the development of SMC 

algorithms for discrete-time systems have been 

sited in the literature [3, 4]. The effectiveness of 

these schemes lies in the fact that they preserve 

the distinguished features of sliding mode 

control and at the same time limits the undesired 

effects of chattering[5, 6]. 

 

Unmodelled dynamics of the plants usually 

degrades the performance of the controller,  
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especially for nonlinear and complex control 

problems [8]. In case of systems having 

perturbed or unknown system dynamics the 

conventional control strategies are combined 

with system identification tools, like neural 

networks for the effective control of the system. 

In these control strategies the parameters are 

adaptively tuned by using some suitable 

adaptation laws. Neural Networks (NNs) have 

been proved a very efficient system 

identification tool due to its universal 

approximation property and leaning 

capability.[9] Some researchers have developed 

Wavelet Neural Networks which are having 

superior approximation capabilities than 

conventional neural networks due to their space 

and frequency localization properties. A wavelet 

network consists of single layer of translated and 

dilated versions of mother wavelet function. 

Hence these networks can be considered as 

optimal approximators [10–12]. Recently the 

researchers are inclined towards the designing 

aspects of Wavelet based adaptive controllers 

for continuous time nonlinear systems [13–15] 

and their discrete time counterparts. [7]  

 

This paper deals with the designing of adaptive 

sliding mode controller for a class of discrete 

time uncertain nonlinear systems. The controller 

strategy is proposed with an objective to provide 

an efficient solution to tracking problem of 

uncertain discrete systems inspired by the 

approximation capabilities of the wavelet neural  

 

networks [13]. This work utilizes the WNN as 

system identification tool.  

 

The paper is organized as follows: section II 

highlights the approximation features of WNN, 

system formulation is described in section III 

and controller designing and stability aspects are 

discussed in section IV. Effectiveness of the 

proposed strategy is illustrated through an 

example in section V while section VI concludes 

the paper. 

 

FUNDAMENTALS OF WAVELET 

NETWORKS 

 

Wavelet Neural Network 

Wavelet networks have emerged as a promising 

tool in the field of learning based control 

methodology due to its properties like 

multiresolution and orthonormality. Wavelet 

network is a single layer network consisting of 

translated and dilated versions of orthonormal 

father and mother wavelet function. Basis 

functions are used in wavelet network span 

2 ( )L   subspace. Due to its universal 

approximation property any function 

2( ) ( )f x L   can be approximated by linear 

combination of basis functions. [10, 11] 

Orthonormality of wavelet bases assures that 

coefficient needed for reconstruction of any 

function are fixed and unique and can be tuned 

independent of other wavelet bases.  
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Wavelets are derived from the basic requirement 

of multiresolution analysis, which provides a 

mathematical framework to describe the 

increment in information from coarse 

approximation to finer approximation. 

Multiresolution analysis is basically a 

decomposition of space 2 ( )S L  , with 

following properties [12] 

(a) Whole space S is constructed as a sequence 

of nested and closed finite dimensional subspace 

iS  

1 0 1 2           S S S S n Z        

 

(b)  0n

n Z

S


  

 

(c) 2 ( )n

n Z

S L


   

So any function f S  can be approximated 

with desired accuracy by its projection 

i if P f on
iS , i.e., lim i

i
f f


 . 

(d)
1( ) (2 )

( ) ( 2 )

i i

i

i i

f x S f x S

f x S f x k S





  

   
 

(e) Multiscale structure provides an orthogonal 

split of 
1iS 
into low and high frequency parts 

 and i iS W  respectively. 

1i i iS S W    

    if 

     if    

i j

i j

W W i j

W S j i

 

 
 

Decomposition of the whole space S can be 

expressed as 

1 2 0 1i i i iS S W W W W W         

 

Normally, the wavelet bases are derived using 

dyadic translation and binary dilation of scaling 

function S   and wavelet function S . At 

any resolution j  

/ 2( ) 2 (2 )      ,j j

jq x x q j q Z     

 ( ),j jqS span x q Z   

and / 2( ) 2 (2 )      ,j j

jq x x q j q Z     

 ( ),j jqW span x q Z   

It follows that any function ( ( ))f x k  in S can be 

expressed as a wavelet series expansion 

2 2

, ,

1 1

( ( )) ( ( )), ( ( )) ( ( ))
N M

j q j q

j N q M

f x k x k f x k x k 
 

                    

(1) 

Convergence of the wavelet series can be 

expressed as 

    

2 2

, ,
1, 1

1 12, 2

lim ( ( )) ( ( )), ( ( )) ( ( )) 0       
N M

j q j q
N M

j N k MN M

f x k x k f x k x k 


 

  

                                                               (2) 

For nonlinear system modeling the structure of 

the wavelet network can not be taken infinitely 

large so truncating the wavelet series to finite 

numbers of resolutions and translates at each 

resolution the above expression can be 

approximated as 

2

, ,

1

( ( )) ( ( )), ( ( )) ( ( )) ( ( ))       
j

j

MN

j q j q

j J q M

f x k x k f x k x k x k  
 

  

                                                                (3)                                                                                                     

where J is lowest resolution, N   represents 

the highest resolution while 

1 , , 2j jq M M     represents the number of 
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translates at jth  resolution and ( ( ))x k  is the 

approximation error defined as    

2

, ,

1

( ( )) ( ( )) ( ( )), ( ( )) ( ( ))       
j

j

MN

j q j q

j J q M

x k f x k x k f x k x k  
 

  

            (4) 

                                                                             

2

, ,

1

2

, ,

1

( ( )), ( ( )) ( ( ))

(( ( )))   (5)

( ( )), ( ( )) ( ( )) ( ( ))

J

J

j

j

M

J q J q

q M

MN

j q j q

j J q M

x k f x k x k

f x k

x k f x k x k x k

 

  



 

 
 

 
  
 
 
 



 

   

Owing to the property of multi resolution 

analysis (3) can be expressed as 

 

For a function of the form ( ( )) : nf x k   , 

wavelet network model can be extended to 

multidimensional wavelet network by tensor 

product of single dimensional wavelet bases. 

[13] 

 

, , , ,

1 1

( ( )) ( ( ));    ( ( )) ( ( ))
n n

J q J q i j q j q i

i i

x k x k x k x k   
 

  

      (6) 

2

, ,

1

2

, ,

1

22

, , , ,

1 1

( ( )), ( ( )) ( )

( ( ))

( ( )), ( ( )) ( ( )) ( ( ))

( ) ( ( )) ( ) ( ( ))
           (7)  

( ( ))

J

J

j

j

jJ

J j

M

J q J q

q M

MN

j q j q

j J q M

MM N

J q J q j q j q

q M j J q M

x k f x k x

f x k

x k f x k x k x k

k x k k x k

x k

 

  

   





 

  

 
 

 
  
 
 
 

 
 

  
 
 



 

  
 

                                                                                           

 

where , ( )J q k , ( )j q k are weights of wavelet 

basis functions  

Now (7) can be rewritten as  

( ( )) ( ) ( ( )) ( ) ( ( )) ( ( ))T Tf x k k x k k x k x k        (8)            

where  

1 2,..,
J J

T

JM JMk k k           and

1 2 1 2, , , , ,
J J N N

T

JM JM NM NMk k k k k                

 are the scaling and wavelet weight vectors 

respectively. 

1 2

1 2

( ( )), , ( ( )),
( ( ))  

, ( ( )), , ( ( ))

J J

N N

T

JM JM

NM NM

x k x k
x k

x k x k

 


 

 
  
  

 and 1 2( ( )) ( ( )),.., ( ( ))
J J

T

JM JMx k x k x k      are 

wavelet and scaling vectors respectively.  

 

It can be shown that, for an arbitrary 

constant 0  , there exist a finite integer 
NJ  

and real constant optimal weight vectors *,  

such that the unknown nonlinear function 

( ( ))f x k  can be approximated as follows       

* *( ( )) ( ( )) ( ( )) ( ( )) ( )  T T nf x k x k x k x k x k         (9)                                          

where ( ( ))x k  denotes the approximation error 

and is assumed to be bounded by ( ( ))x k   , 

in which    is a positive constant and   is a 

compact set. 

Optimal parameter vectors needed for best 

approximation of the function are difficult to 

determine so defining an estimate function as 

ˆ ˆˆ( ( )) ( ( )) ( ( ))T Tf x k x k x k                  (10)                                            

where ˆˆ ,  are the estimates of 

*, respectively. Defining the estimation error 

as           

 

ˆ( ( )) ( ( )) ( ( ))

( ) ( ( )) ( ( )) ( ( ))T T

f x k f x k f x k

k x k k x k x k  

  

    
 

                                                            (11)   
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where     ˆˆk k k k                

                           

By properly selecting the number of resolutions, 

the estimation error ( ( ))f x k  can be made 

arbitrarily small on the compact set so that the 

bound ( ( ))f x k  ≤
mf holds for all  nx .  

The residual part ( )x  can be assumed to be 

bounded by a linear in parameter function 

( ( )) ( )Tx k z k                                    (12)           

 

where 4   represents unknown optimal 

weight vector while  ( )z k  is defined as 

ˆˆ( ) 1, ( ) , ( ) ( ) , ( ) ( )
T

z k x k x k k x k k  
 

.   

 

Assuming that ˆ( )k  be the estimate of  , 

estimation error will be ˆ( ) ( )k k     

.Adaptation laws for the online tuning of 

ˆˆ ˆ( ), ( ) and ( )k k k    will be derived in following 

section. 

 

SYSTEM FORMULATION 

 

Consider a discrete time nonlinear system of the 

form  

1 2 1

2 3 2

1

( 1) ( ) ( ( ))

( 1) ( ) ( ( ))

( 1) ( ( )) ( )

( ) ( )

n n

x k x k f x k

x k x k f x k

x k f x k u k

y k x k

  

  

  



                                    

(13) 

where 

 1 2( ) ( ), ( ),..., ( ) , ( ) , ( )
T n

nx k x k x k x k u k y k   

 are state vector, control input and output 

respectively. Vector field 

1 2( ( )) [ ( ( )), ( ( )), , ( ( ))] : n n

nf x k f x k f x k f x k    

is the unknown nonlinear system dynamics. In 

this work unknown system dynamics is 

approximated by a wavelet network. 

 

The objective is to design adaptive sliding mode 

controller to achieve the desired tracking 

performance simultaneously nullifying the effect 

of modeling inaccuracies. 

 

WAVELET SLIDING MODE 

CONTROLLER DESIGN 

 

Let ( ) n

dy k   be the desired trajectory vector 

and assuming that its past values for previous 

( 1)n  instances are known. 

Defining the state tracking error vector 

( ) ( ) ( )de k x k y k                                        (14)          

with ( ) ( ) ( )        1, ,i i de k x k y k i n i n                                                         

So the error dynamics of the system (13) 

becomes 

1( 1) ( )+ ( ( ))  1 1

( 1) ( ( )) ( ) ( 1)

i i i

n d

e k e k f x k i n

e k f x k u k y k

    

    
                      

(15) 

A linear functional sliding surface is defined as 

( ) ( )s k ce k                                                         

(16) 
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where  1 2, , , n

nc c c c   is a vector of 

positive constant values, selected such that the 

poles of the systems are located inside the unit 

circle. Then ( 1)s k   is defined as 

1 2 2 3 1 1 1

2 2

( ) ( ) ( ) ( ( ))
( 1)

( ( )) ( ( )) ( ( ) ( 1))

n n

n n n d

c e k c e k c e k c f x k
s k

c f x k c f x k c u k y k

    
   

      

                                                                          

(17) 

In this expression the component 

1 1( ( ( )) ( ( )))n nc f x k c f x k  is modeled by using a 

wavelet network. 

For discrete time systems an inequality of the 

form 

 ( ) ( 1) ( ) 0s k s k s k                                  (18) 

is necessary but not sufficient condition to be 

used as reaching law, as it does not assures the 

convergence towards the sliding surface.  

In order to assure reaching condition constraint 

imposed by following inequality is also required 

to be satisfied  

( 1) ( )s k s k                                            (19)            

By combining (18) and (19) an efficient sliding 

mode control law can be constructed. [6] 

 Defining the control effort as  

( ) ( ) ( )eq ru k u k u k                          (20)                                                                                 

where the equivalent control tern is defined as  

1 2 2 3 1

1
( 1) ( ( ) ( ) ( )

( )

ˆ ( ( )) ( ))

d n n

neq

y k c e k c e k c e k
cu k

f x k s k



 
      

  
  

                                                                 (21) 

here ˆ( ( ))f x k is the wavelet approximation of 

uncertain term 

1 1 2 2( ( ( )) ( ( )) ( ( )))n nc f x k c f x k c f x k    and 

0 1   . 

 

The robust control term is defined as  

1
ˆ( ) ( ( ) ( )sgn( ( )))T

r

n

u k k z k s k
c

        (22)            

With the help of the proposed tuning laws 

presented in the next part of this section, the 

error term ( )f k  is reduced to a small arbitrary 

value which is further attenuated by robust 

control term ( )ru k . 

 

Weight update rules for wavelet network 

parameters and weight parameters for adaptive 

approximation of residual term are based on 

Lyapunov based adaptation methodology and 

are given as 

ˆ ˆ ˆ( 1) ( ) ( )

ˆ ˆ ˆ( 1) ( ) ( )

ˆ ˆ ˆ( 1) ( ) ( )

k k k

k k k

k k k

  

  

  

   

   

   

 

1

2

3

( ) ( ) ( ( ))

( ) ( ) ( ( ))

( ) ( ) ( )

k s k x k

k s k x k

k s k z k

  

  

 

  

  

  

                                (23) 

where 
1 2 3, ,    are the learning rates with 

positive constants.  

 

Theorem: For the system of the form (13), with 

sliding surface (16) , if weight parameters are 

adaptively tuned as per laws proposed in (23) 

then the wavelet based sliding mode control law 

(20), (21) and (22) guarantees the convergence 

of every trajectory of closed loop system to the 

sliding surface satisfying the inequalities (18) 

and (19). 
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Proof: Consider a function of the form  

1

2 3

1
( ) ( )( ( 1) ( )) ( )( ( 1) ( ))

1 1
( )( ( 1) ( )) ( )( ( 1) ( ))      (24)

T

T T

V k s k s k s k k k k

k k k k k k

  


     
 

       

    

      

Substituting control law ( )u k (20), (21) in above 

equation 

1

2 3

1
ˆ ˆ( ) ( )( ( ) ) ( )( ( 1) ( ))

1 1ˆ ˆ ˆ ˆ( )( ( 1) ( )) ( )( ( 1) ( ))

T

n r

T T

V k s k f s k c u k k k

k k k k k k

   


     
 

       

    

 

1

2 3

1
ˆ( ) ( )( ( ( )) ( ) ) ( ) ( )

1 1ˆ ˆ( ) ( ) ( ) ( )

T

n r

T T

V k s k f x k s k c u k k

k k k k

  


   
 

      

  

 

Substituting ( ( ))f x k (11) and adaptation laws for 

ˆˆ( ) and ( )k k     (23) in above equation, 

3

1
ˆ( ) ( )( ( ( )) - ( ) ) ( ) ( )T

n rV k s k x k s k c u k k   


      

  2

3

1
ˆ( ) ( ( )) - ( ) ( ) ( ) ( )T

n rs k x k s k c u s k k k   


     

Substituting ( ( ))x k (12) in above equation 

2

3

1
ˆ( ) ( )- ( ) ( ) ( ) ( )T T

n rs k z k s k c u s k k k   


     

2

3

1
ˆ ˆ( ) ( ( ) ( )) ( )- ( ) ( ) ( ) ( )T T T

n rs k k k z k s k c u s k k k    


    

 

Substituting ru  and adaptation laws for ˆ( )k  

(23) in above equation  

2- ( )s k                                                            

(25) 

 

 

Therefore ( )V k  is negative which implies the 

convergence of system trajectories to sliding 

surface and boundedness of all the closed loop 

signals. 

 

SIMULATION RESULTS 

 

Simulation is performed to verify the 

effectiveness of proposed wavelet based sliding 

mode control strategy. Considering a system of 

the form 

2

1 2

1 2 2 2

1 3

1 2 2

2 3 2 2

2 3

1 1

3 2

2

1

0.3 ( ) ( )
( 1) ( )

5 ( ) ( )

0.2 ( ) ( )sin( ( ))
( 1) ( )

5 ( ) ( )

0.62 ( )sin(2 ( ))
( 1) ( )

10 ( )

( ) ( )

x k x k
x k x k
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    (26) 

 

System belongs to the class of discrete time 

uncertain nonlinear systems defined by (9) with 

3n  .The sampling time T  is taken as 0.05 sec . 

The proposed controller strategy is applied to 

this system with an objective to solve the 

tracking problem of system. 

The desired trajectory is taken as 
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  (27) 
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Initial conditions are taken 

as    0 1.8,1.2,1.5
T

x  . Controller parameters are 

taken as [0.1,0.075,0.234]; 0.1c   . Wavelet 

network used for modeling the uncertainties is 

constructed by using three dimensional 

Daubechies wavelet (db3), J is kept 2 with 

2 7
J

M   while N  is selected as 5 and translates 

are made double when resolution is increased 

by1 .Wavelet parameters for wavelet network are 

tuned online using the proposed adaptation laws, 

initial conditions for all the wavelet parameters 

are set to zero. To avoid chattering sgn( ( ))s k is 

replaced by following saturation function 

 

( )                ( ) 0.05
( )

sgn( ( ))         ( ) 0.05

s k s k
r k

s k s k

 
 



               (28) 

                 

Simulation results are shown in Figure.1 and 

Figure.2. Figure.1 reflects the efficient tracking 

performance of the proposed controller scheme. 

Due to fast and efficient learning ability of 

wavelet network, system response rapidly tracks 

the desired trajectory with rapidly decaying 

transient observed during initial phase of the 

simulation. Tracking efficiency of the proposed 

scheme is also illustrated by inserting bounded 

spikes in the desired trajectory. Figure.2 shows 

tracking error and sliding function for the system 

under consideration. As observed from the 

figure tracking error and sliding surface are 

always close to zero with mean square value of 

the tracking error about 5.4 3e .  
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       Fig. 1: System Output and Control Effort 
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Fig. 2: Tracking Error and Sliding Surface 
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CONCLUSION 

 

A wavelet based sliding mode control scheme is 

proposed for a class of discrete time uncertain 

nonlinear systems. Wavelet networks are used 

for approximating the uncertain system 

dynamics. Adaptation laws are developed for 

online tuning of the wavelet parameters. The 

theoretical analysis is validated by the 

simulation results. 
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