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Abstract 
Isogeometric analysis is a popular method for the analysis of problems involving complex 

geometry and governed by differential equations. Meta-heuristics are widely used to determine 

the optimum distribution of material within the given design domain. The focus of this study is 

to perform isogeometric topology optimization of continuum structures using meta-heuristics 

nature inspired firefly algorithm. NURBS basis functions are used to construct the geometric 

model and to calculate the displacements as well. In this paper, a two dimensional plate 

structure is modeled using NURBS basis functions and analyzed for the given loading and 

boundary conditions. ESO technique is used to identify the elements which carry the material 

and penalize the remaining elements which do not carry any stress. Few examples have been 

solved and the results are presented. The results clearly show that the distribution of material 

using isogeometric analysis is similar to the distribution of material using FEA.  
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INTRODUCTION 
Isogeometric analysis has shown advantages 
over traditional approaches in the context of 
optimization problems. NURBS can be useful 
to generate smooth surfaces leading to more 
physically accurate models [1]. This study is 
focused on structural mechanics and 
optimization problems for the purpose of 
validation and methodology. The first paper on 
IGA is published by Hughes et al. in the year 
2005 in which the authors proposed IGA with 
different refinement techniques [2, 3]. The 
isogeometric analysis is spreading into various 
fields and the applications cannot be 
understood. This study is focused on basic 
problems in structural mechanics. 
 

Next part of the paper briefly discusses on the 

literature review in the field of applied 

mechanics. The following part presents a 

methodology to conduct this study, and after 

that the theoretical background to conduct this 

study is discussed, the flowchart used to write 

the program in C++ is presented, few problems 

from the literature are solved to verify the 

proposed approach and the results are 

compared with those existing in the literature 

and the last part presents the conclusions and 

future study for further analysis and design. 

LITERATURE REVIEW 

The paper by Hughes in 2005 has 
revolutionized the field to model the geometry 
and analyze the domain [2]. Several papers 
were published in different areas and the 
isogeometric analysis can be used for an exact 
and more precise result. Although optimization 
of civil engineering structures involves lot of 
programming and computational effort to 
perform the optimization of continuum 
structures, there are very few papers in this area 
of research. Nguyen, in his paper has presented 
the IGA to solve several problems including 
static analysis, vibration problems and crack 
width calculations [1]. Espath in his paper 
solved non-linear mechanics using IGA [4]. 
Gondegaon in his paper solved the static 
analysis and modal analysis using Isogeometric 
analysis [3]. Gondegaon in another paper 
applied IGA to solve differential equations such 
as Poisson’s equation using Galerkin 
formulation [5]. Hartman in his paper has used 
IGA with LS-DYNA [6]. Hassani applied IGA 
to perform topology optimization of continuum 
structures using optimality criteria [7]. He 
solved a few problems cantilever carrying a 
point load at the corner as well as point load at 
the centre. He has also optimized the problems 
on simply supported beam carrying a point load 
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at the centre of the lower edge. He optimized 
the MBB beam problem which is one of the 
benchmark problems in the optimization of 
structures. Joo-Sung applied the isogeometric 
analysis concept in the context of structural 
mechanics [8]. He optimized a cantilever model 
having bracket as test problems and the results 
were compared with the analysis of 
MSC/Nastran. Shah in his paper has studied the 
application of IGA to optimize structures in 
aerospace engineering [9]. He compared the 
results of his study with the results obtained by 
using MSC/Nastran. Nagy in his paper applied 

variational formulation to perform optimization 
[10].  
 

METHODOLOGY 

The number of publications on isogeometric 

topology optimization of continuum structures 

is very few. One cannot understand the papers 

for a complete picture of how to perform the 

analysis. The theoretical background includes 

the formulation required and the flowchart 

shows the steps to perform the optimization 

process. Figure 1 shows the approach followed 

to conduct this study. 
 

 
Fig. 1: Flowchart Showing the Methodology Approach. 

 

THEORETICAL BACKGROUND 

Basis Functions [2]  

𝑁𝑖,0(𝜉) = {
1 𝑖𝑓𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

For p=1, 2, 3, …. They are defined by: 

𝑁𝑖,𝑝(𝜉) =
𝜉 − 𝜉𝑖

𝜉𝑖+𝑝 − 𝜉𝑖
𝑁𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉) 

This is referred to as the Cox-de Boor recursion formula. 
 

Derivatives of B-Spline Basis Functions 
𝑑

𝑑𝑥
𝑁𝑖,𝑝(𝜉) =

𝑝

𝜉𝑖+𝑝 − 𝜉𝑖
𝑁𝑖,𝑝−1(𝜉) −

𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉) 

 

Generalize to Higher Order Derivatives [7]  

𝑑𝑘

𝑑𝑘𝜉
𝑁𝑖,𝑝(𝜉) =

𝑝

𝜉𝑖+𝑝 − 𝜉𝑖
(

𝑑𝑘−1

𝑑𝑘−1𝜉
𝑁𝑖,𝑝−1(𝜉)) −

𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
(

𝑑𝑘−1

𝑑𝑘−1𝜉
𝑁𝑖+1,𝑝−1(𝜉)) 

B-Spline Curves 

𝐶(𝜉) = ∑𝑁𝑖,𝑝(𝜉)𝐵𝑖

𝑛

𝑖=1

 

B-Spline Surfaces 

𝑆(𝜉, 𝜂) = ∑∑𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)

𝑚

𝑗=1

𝐵𝑖,𝑗

𝑛

𝑖=1

 

Check the validity of the result

Perform the Isogeometric Topology Optimisation

Develop the Code 

Develop the Algorithm and Flowchart

Formulation of the Problem

Review the Literature
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B-Spline Solids 

𝑆(𝜉, 𝜂, 𝜁) = ∑∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝐿𝑘,𝑟( | |𝜁)𝐵𝑖,𝑗,𝑘

𝑙

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 

 

NURBS Basis Function 

With a given projective B-spline curve and its associated projective control points in hand, the control 

points for the NURBS curve are obtained by using the following relations: 

(𝐵𝑖)𝑗 =
(𝐵| |𝑖𝑤)𝑗

𝑤𝑖
𝑗 = 1,2… , 𝑑 

𝑤𝑖 = (𝐵| |𝑖𝑤)𝑗𝑑+1 

NURBS basis is given by:  

For NURBS Curve  

𝑅𝑖
𝑝(𝜉) =

𝑁𝑖,𝑝(𝜉)𝑤𝑖

∑ 𝑁𝑖,𝑝(𝜉)𝑤𝑖
𝑛
𝑖=1

 

𝐶(𝜉) = ∑𝑅𝑖
𝑝(𝜉)𝐵𝑖

𝑛

𝑖=1

 

This is identical to the B-Splines. 

For NURBS Surfaces 

𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑤𝑖,𝑗

∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑤𝑖,𝑗
𝑚
𝑗=1

𝑛
𝑖=1

 

 

For NURBS Solids 

𝑅𝑖,𝑗,𝑘
𝑝,𝑞,𝑟(𝜉, 𝜂, 𝜁) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝐿𝑘,𝑟(𝜁)𝑤𝑖,𝑗,𝑘

∑ ∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝐿𝑘,𝑟(𝜁)𝑤𝑖,𝑗,𝑘
𝑙
𝑘=1

𝑚
𝑗=1

𝑛
𝑖=1

 

 

Derivatives of NURBS  

Apply the quotient rule,  

𝑑

𝑑𝜉
𝑅𝑖

𝑝(𝜉) = 𝑤𝑖

𝑊(𝜉)𝑁𝑖,𝑝
′ (𝜉) − 𝑊′(𝜉)𝑁𝑖,𝑝(𝜉)

(𝑊(𝜉))
2  

𝑤ℎ𝑒𝑟𝑒𝑁𝑖,𝑝
′ (𝜉) =

𝑑

𝑑𝜉
𝑁𝑖,𝑝(𝜉) ∧ 𝑊′(𝜉) = ∑𝑁𝑖,𝑝

′

𝑛

𝑖=1

(𝜉)𝑤𝑖 

 

For Higher Order Derivatives of NURBS Basis Functions [7]  

𝐴𝑖
(𝑘)(𝜉) = 𝑤𝑖

𝑑𝑘

𝑑𝜉𝑘
𝑁𝑖,𝑝(𝜉), (𝑛𝑜 ∑𝑜𝑛 𝑖) 

 

We do not sum on the repeated index, and let,  

𝑊(𝑘)(𝜉) =
𝑑𝑘

𝑑𝜉𝑘
𝑊(𝜉) 

 

Higher order derivatives can be expressed in terms of the lower order derivatives as:  

𝑑𝑘

𝑑𝜉𝑘
𝑅𝑖

𝑝(𝜉) =

𝐴𝑖
(𝑘)(𝜉) − ∑ (

𝑘
𝑗
)𝑘

𝑗=1 𝑊(𝑗)(𝜉)
𝑑(𝑘−𝑗)

𝑑𝜉(𝑘−𝑗) 𝑅𝑖
𝑝(𝜉)

𝑊(𝜉)
 

𝑤ℎ𝑒𝑟𝑒 (
𝑘
𝑗
) =

𝑘!

𝑗! (𝑘 − 𝑗)!
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Parametric to Parent Mapping 

𝜉 =
1

2
[(𝜉𝑖+1 − 𝜉𝑖)𝜉 + (𝜉𝑖+1 − 𝜉𝑖)] 

 

𝜂 =
1

2
[(𝜂𝑖+1 − 𝜂𝑖)𝜂 + (𝜂𝑖+1 − 𝜂𝑖)] 

 

𝐽�́�,�́� =
1

4
(𝜉𝑖+1 − 𝜉𝑖)(𝜂𝑖+1 − 𝜂𝑖) 

 

Parametric Space to Physical Space [3]  

X=N1M1X1+N2M1X2+N2M2X3+N1M2X4 

Y=N1M1Y1+N2M1Y2+N2M2Y3+N1M2Y4 

[
 
 
 
 
𝜕𝑁

𝜕𝜉
𝜕𝑁

𝜕𝜂]
 
 
 
 

=

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂]
 
 
 
 

[
 
 
 
𝜕𝑁

𝜕𝑥
𝜕𝑁

𝜕𝑦]
 
 
 
 

𝜕𝑥

𝜕𝜉
=

𝜕

𝜕𝜉
[𝑁1𝑀1𝑁2𝑀1𝑁2𝑀2𝑁1𝑀2][𝑥1𝑥2𝑥3𝑥4]

𝑇 

 
𝜕𝑥

𝜕𝜂
=

𝜕

𝜕𝜂
[𝑁1𝑀1𝑁2𝑀1𝑁2𝑀2𝑁1𝑀2][𝑥1𝑥2𝑥3𝑥4]

𝑇 

 
𝜕𝑦

𝜕𝜉
=

𝜕

𝜕𝜉
[𝑁1𝑀1𝑁2𝑀1𝑁2𝑀2𝑁1𝑀2][𝑦1𝑦2𝑦3𝑦4]

𝑇 

 
𝜕𝑦

𝜕𝜂
=

𝜕

𝜕𝜂
[𝑁1𝑀1𝑁2𝑀1𝑁2𝑀2𝑁1𝑀2][𝑦1𝑦2𝑦3𝑦4]

𝑇 

 

Strain Displacement Matrix [11] 

𝐵 =

[
 
 
 
 
 
 
𝜕𝑁

𝜕𝑥
0

0
𝜕𝑁

𝜕𝑦
𝜕𝑁

𝜕𝑦

𝜕𝑁

𝜕𝑥 ]
 
 
 
 
 
 

 

𝜖 =

[
 
 
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥]
 
 
 
 
 
 

 

[
 
 
 
𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦]
 
 
 
=

1

|𝐽|
[

𝐽22 −𝐽12

−𝐽21 𝐽11
]

[
 
 
 
 
𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕𝜂]
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𝜖 = 𝐴𝐺 =
1

|𝐽|
[
𝐽22

0
−𝐽12

0

0
−𝐽21

0
𝐽11

−𝐽21 𝐽11 𝐽22 −𝐽12

]

[
 
 
 
 
 
 
 
 
𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕𝜂
𝜕𝑣

𝜕𝜉
𝜕𝑣

𝜕𝜂]
 
 
 
 
 
 
 
 

 

For Element 1 [3]:  

[
 
 
 
 
 
 
 
 
𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕𝜂
𝜕𝑣

𝜕𝜉
𝜕𝑣

𝜕𝜂]
 
 
 
 
 
 
 
 

= [

4𝜂 − 2 0
4𝜉 − 2 0

2 − 4𝜂 0
−4𝜉 0

0 4𝜂 − 2
0 4𝜉 − 2

0 2 − 4𝜂
0 −4𝜉

4𝜂 0
4𝜉 0

−4𝜂 0
2 − 4𝜉 0

0 4𝜂
0 4𝜉

0 −4𝜂
0 2 − 4𝜉

]

[
 
 
 
 
 
 
 
𝑞1

𝑞2
𝑞3

𝑞4
𝑞5

𝑞6
𝑞7

𝑞8]
 
 
 
 
 
 
 

 

Plane Stress 

𝐷 =
𝐸

(1 − 𝜐2)
[
1 𝜐 0
𝜐 1 0
0 0 (1 − 𝜐) 2⁄

] 

 

Plane Strain:  

𝐷 =
𝐸

(1 + 𝜐)(1 − 2𝜐)
[

1 − 𝜐 𝜐 0
𝜐 1 − 𝜐 0

0 0 (
1

2
) − 𝜐

] 

 

Stiffness Matrix [5]  

𝑘 = 𝑡 ∫ ∫ 𝐵𝑇𝐷𝐵
1

−1

1

−1

|𝐽𝜉,𝜂|𝑑𝜉𝑑𝜂 |𝐽�́�,�́�|𝑤𝑒𝑖𝑔ℎ𝑡 

 

Gauss Quadrature  

𝜉 = ±
1

√3
𝜂 = ±

1

√3
 

 

Traction 

∫𝑢𝑇𝑇 = [𝑢𝑣]𝑇 [
𝑇𝑥

𝑇𝑦
] |𝐽𝜉,𝜂|𝑑𝜉𝑑𝜂 |𝐽�́�,�́�|𝑤𝑒𝑖𝑔ℎ𝑡 

[𝑢𝑣]𝑇 [
𝑇𝑥

𝑇𝑦
]

=

[
 
 
 
 
 
 
 
𝑁1𝑀1 0
0 𝑁1𝑀1

𝑁2𝑀1 0
0 𝑁2𝑀1

𝑁2𝑀2 0
0 𝑁2𝑀2

𝑁1𝑀2 0
0 𝑁1𝑀2]

 
 
 
 
 
 
 

8𝑥2

[
𝑁1𝑀1

0

0
𝑁1𝑀1

𝑁2𝑀1

0

0
𝑁2𝑀1

𝑁2𝑀2

0

0
𝑁2𝑀2

𝑁1𝑀2

0

0
𝑁1𝑀2

]
2𝑥8

[
 
 
 
 
 
 
 
 
𝑇𝑥1

𝑇𝑦1

𝑇𝑥2

𝑇𝑦2

𝑇𝑥3

𝑇𝑦3

𝑇𝑥4

𝑇𝑦4]
 
 
 
 
 
 
 
 

8𝑥1
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Algorithm to Perform the IGA Analysis [9] 

The algorithm to perform the isogeometric 

analysis of a two dimensional plate structure 

carrying in-plane loading: 

1. Determine NURBS coordinates  using 

elRangeU and elRangeV. 

2. Store the connectivity of the element in an 

array names sctrB (of size nn). 

3. Define strain displacement matrix B of size 

(1,2*nn). 

4. Set ke=0. 

5. Loop over Gauss points (GPs) {𝜉𝑗
′, 𝜔𝑗

′} j=1, 

2, …, ngp where ngp is the number of gauss 

points. 

a) Compute parametric coordinate 𝜉 

corresponding to 𝜉𝑗
′. 

b) Compute |𝐽𝜉′| corresponding to the 

equations. 

c) Compute the derivatives of the shape 

functions 𝑅𝑤𝜉
𝑒  and 𝑅𝑤𝜂

𝑒  at point 𝜉, 𝜂. 

d) Compute 𝐽𝜉 using control points 

(sctr(:,e)) 𝑅𝑤𝜉
𝑒  and 𝑅𝑤𝜂

𝑒 . 

e) Find 𝐽𝜉
−1 and determinant |𝐽𝜉|. 

f) Compute the shape function 

derivatives 𝑅𝑥 = 𝐽𝜉
−1[𝑅,𝜉

𝑇𝑅,𝜂
𝑇 ]. 

g) Use Rx to build the strain displacement 

matrix B. 

h) 𝑘𝑒 = 𝑘𝑒 + 𝐵𝑇𝐷𝐵|𝐽𝜉′||𝐽𝜂′|𝜔𝑗
′. 

6. End loop on gauss points. 

7. Assemble ke into global stiffness matrix 

KG. 

8. End loop over all the elements. 
 

The flowchart to develop the code in C++ is as 

shown below in Figure 2. 

 

FLOW CHART 

No

Start

Initialise Pop size
Number of Iterations

Relative density Lower limit
Stress Lower Limit
Firefly Parameters
Allowable Material

Generate Initial values 
of Relative Density

For Iteration = 1 to ITER

For I = 1 to N

For J = 1 to N

Calculate the Initial 
Objective Function

Compare 
Objective Function  
or Light Intensity

Ij > Ii

No

Yes

Perform Isogeometric Analysis
Check for Stress, Displacement

Check for Connectivity

Yes

No

1

2

3

6

5

4

Calculate the Objective Function

3

Reallocation based on Stress

Check for Connectivity 2

Perform IGA 

Next  J
Newer Distribution

Next  I

Next Iteration

Stop

End

1, 2

Yes

6

5

4

Convergence

No

Stop
Yes

 
Fig. 2: Showing the Flowchart to Develop the Code in C++. 



Journal of Experimental & Applied Mechanics 

Volume 8, Issue 3 

ISSN: 2230-9845 (Online), ISSN: 2321-516X (Print) 

 

JoEAM (2017) 8-18 © STM Journals 2017. All Rights Reserved                                                                 Page 14 

9600 mm

7542

  
(a) Simply supported Plate (b) Final distribution of material 

Fig. 3: (a) Showing the Simply Supported Plate Carrying in-Plane Loading at the Centre of the Top 

Edge; (b) the Final Optimized Output of Isogeometric Topology Optimization of the Simply 

Supported Plate Structure Carrying in-Plane Loading. 

 

ANALYSIS 

A Simply Supported Beam 

A simply supported plate having dimensions of 

9600 mm×3300 mm as shown in the Figure 3a 

carries a point load of magnitude 7542 N at the 

centre of the top edge acting vertically 

downwards. The simple supports are provided 

at both the ends on the lower edge as shown. 

The entire domain is meshed using 352 

numbers four node quadrilateral elements in 

plane stress condition. The total number of 

nodes (control points) is 396. The Young’s 

Modulus of elasticity is taken as 2×105 N/mm2 

and the Poisson’s ratio as 0.30. The weight 

density is taken as 7800 kg/m3. The maximum 

permissible stress is 200 N/mm2. The thickness 

of the plate is one unit. The degree of the basis 

function along both the dimensions is first 

order. Figure 3b shows the optimal distribution 

of material using IGA and firefly algorithm. 

 

The mesh size is 32 elements along dimension 

1 and 11 elements along dimension 2. The total 

number of elements =32×11=352. 

Xi Vector = { 0 0 0

 0.03125 0.0625 0.09375 0.125

 0.15625 0.1875 0.21875  0.25

 0.28125  0.3125 

 0.34375  0.375 0.40625 

 0.4375 0.46875 0.5 0.53125 

 0.5625  0.59375  0.625

 0.65625  0.6875 0.71875 

 0.75 0.78125  0.8125 

 0.84375  0.875 0.90625 

 0.9375 0.96875 1 1 1

 } 

Eta Vector = { 0 0 0

 0.0909090909 0.1818181818

 0.2727272727 0.3636363636

 0.4545454545 0.5454545455

 0.6363636364 0.7272727273

 0.8181818182 0.9090909091 1

 1 1 } 

 

The NURBS basis functions were used and the 

optimization process was carried out using 

firefly algorithm as per the flowchart as shown 

in the Figure 2. The isogeometric topology 

optimization of the plate structure is performed 

and the final optimized output is shown in the 

Figure 3. The total number of iterations is 424.  

 

A Cantilever Plate 

A cantilever plate having dimensions 

9600 mm×3300 mm is supported at the corners 

of the left edge as shown in the Figure 4a. The 

plate carries a point concentrated load of 

5028 N at the lower corner of the right end. To 

avoid stress concentration, the loading and the 

supports are distributed over two nodes as 

shown. The thickness of the plate is one unit. 

The Young’s Modulus of elasticity is 2×10 

5 N/mm2. The Poisson’s ratio is taken as 0.3. 

The design domain is discretized using four 

node first order quadrilateral elements in plane 

stress condition. The total number of nodes is 

396 and the number of elements is 352. The 

permissible stress is 200 N/mm2. The weight 

density of the material is taken as 7800 kg/m3. 

The degree of the basis function is linear. 

Figure 4b shows the optimal distribution of the 

material in the design domain. Figure 4c shows 

the optimal distribution of material by Hassani 

et al. using 1000 linear finite elements [7]. 

Figure 5 shows the iteration curve with weight 

of the structure on Y-axis and the iteration 

number on X-axis.
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9600 mm

5028 N   
(a) Cantilever Plate (b) Final Distribution of material 

Fig. 4: (a) Showing the Initial Design Domain of the Cantilever Plate Carrying a Point Load at the 

Corner of the Right Edge, (b) Showing the Isogeometric Topology Optimal Distribution of Material 

Inside the Design Domain of the Cantilever Plate Using Firefly Algorithm. 

 

 
Fig. 4: (c) Showing the Optimal Distribution of Short Cantilever Beam with 1000 Four-Node Finite 

Elements by Hassani et al. [7]. 

 

 
Fig. 5: Showing the Iteration History and the Iteration Curve with the Weight of the Structure on Y-

Axis and the Iteration Number on X-Axis. 

 

A Cantilever Plate Carrying Point Load at 

the Mid-Point of the Right Edge 

For the sake of the symmetry, one half of the 

structure is analyzed. A cantilever plate of 

9600 mm×3300 mm carries a concentrated load 

of 5028 N as shown in the Figure 6. The plate 

is supported at the lower left end corner as 

shown in the Figure 6. The structure is 

discretized into 352 elements first order four 

node plane quadrilateral elements in plane 

stress condition. The total number of nodes is 

396. The thickness of the plate is one unit. The 

Young’s Modulus of elasticity is 2×105 N/mm2 

and the Poisson’s ratio is 0.3. The permissible 

stress is taken as 200 MPa and the weight 

density is 7800 kg/m3. The degree of basis 

function is linear. Figure 6b shows the optimal 

distribution of the material inside the design 

domain. Figure 7(a) shows the flip vertical 

image and compared with the existing results 

obtained as shown in the Figure 7(b) by 

Hasasni et al. using 400 and 1617 control points 

respectively [7]. Figure 8 shows the iteration 

history and the iteration curve with weight of 

the structure on Y-axis and the iteration number 

on X-axis. 

260

270

280

290

300

310

320

0 1 2 3 4 5 6 7 8 9

Graph showing the iteration curve with Weight of the 

structure on Y-Axis and the iteration Number on X-Axis
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9600 mm

5028 N

Centre Line 

  
Fig. 6: (a) Cantilever Plate Carrying Point Load at the Midpoint, (b) Optimal Distribution of 

Material. 

 

 
  

(a) (b) 

Fig. 7: (a) Showing the Flip Vertical Image, (b) Optimal Layout Using 400 Control Points and 

1617 Control Points by Hassani et al. [7]. 

 

 
Fig. 8: Showing the Iteration History and the Iteration Curve with Weight on Y-Axis and the Iteration 

Number on X-Axis. 

 

A Simply Supported Beam Carrying a 

Point Load at the Centre of the Lower Edge 

between the Supports (Michelle) 

The given design domain is a simply supported 

beam 9600×3300 mm. The beam carries a point 

load of magnitude 10056 N at the centre. For 

the sake of simplicity, half of the domain is 

analyzed due to symmetry. The mesh consists 

of 352 elements and 396 nodes. The modulus of 

elasticity is taken as 2×105 N/mm2 and the 

Poissons ratio as 0.3. The weight density is 

taken as 7870 kg/m3. The thickness is one unit. 

The degree of basis function is one along each 

direction. The design domain is as shown in the 

Figure 9(a). The Figure 9(b) shows the optimal 

distribution of material using the firefly 

algorithm. The design is a fully stressed design. 

Figure 10(a) shows the flip horizontal image of 

the distribution and compared with the optimal 

distribution as shown in Figure 10(b) by 

Hartman using 1617 control points (nodes) [6]. 

Table 1 shows the comparison of the minimum 

volume obtained using Firefly algorithm and 

the by Hassani et al. [7]. The final weight of the 

structure is higher, further optimization can 

reduce the weight which requires additional 

computational effort. 
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Graph showing the Iteration curve having Weight on 
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9600 mm

Centre Line 

10056 N   
Fig. 9: (a) Showing the Design Domain, (b) Optimal Design Using IGA (98/352). 

 

  
Fig. 10: (a) Showing Flip Horizontal Image, (b) Optimal Distribution, 1617 ctrl pts [7]. 

 

Table 1: Showing the Comparison of the 

Volume Fraction. 

 
This Study using 

FFA 

Hassani et al. 

[7] 

Minimum Volume 

(V/V0) % 
27.84% 20% 

 

Limitations 

1. Domains with fewer elements are used. 

However the results show a good 

agreement in the optimal distribution of 

material.  

2. The analysis is done using single patch only. 

 

CONCLUSIONS 

The isogeometric analysis is used to perform 

the topology optimization of continuum 

structures. A few basic problems are solved and 

the results are compared with those existing in 

the literature. The IGA of the cantilever plate 

fixed on left end and carries a point load at the 

right end corner shows a similar distribution 

with those existing in the literature. The results 

can be refined using large number of elements. 

The optimal distribution of a simply supported 

beam carrying a point load at the centre of the 

top edge shows that the distribution of the 

material is an inverted V-form similar to the 

theoretical distribution. The Michelle beam 

clearly shows a similar distribution to those 

existing in the literature. The results using 

Firefly algorithm show a good agreement with 

those results in the literature. However single 

patch is used and domains having fewer 

elements were used. 

Future Study 

1. The concept can be applied to solve 

vibration problems to find the fundamental 

frequency. 

2. IGA can be applied in fracture mechanics 

to calculate the crack width. 

3. IGA can be applied to perform non-linear 

analysis. 
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