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Abstract 
The present study deals with the analysis of rotating spherical pressure vessels made of 

functionally graded materials (FGMs). Material properties are graded along the radial 

direction, which is achieved by varying volume fractions of the constituting materials 

according to Mori-Tanaka scheme.  Shells are subjected to hydrostatic internal pressure and 

have free boundary condition at the outer surface.  Governing equations are derived using 

principle of stationary total potential. The effects of grading parameter and thickness 

parameter on stress and deformation behavior of the shells are investigated for ceramic-metal 

shell. Results obtained show that there is a significant reduction in stresses and deformation 

of the FGM shells as compared to homogeneous shell.  
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INTRODUCTION 

Functionally graded materials (FGMs) are 

special composite materials that have 

continuous variations of material properties. 

Properties are graded in a particular direction by 

varying the volume fractions of the constituent 

materials. Functionally graded shells are widely 

used in space vehicles, aircrafts, nuclear power 

plants and many other engineering applications 

[1]. It is very important to control and optimize 

stresses and displacement fields due to internal 

pressure and centrifugal force which is achieved 

by controlling the change in local material 

properties in FGMs.  

 

Many researchers have worked on stress 

analysis of rotating spherical shells, conical 

shells, cylindrical shells, disks etc. by analytical 

as well as approximate methods. Tutuncu and 

Ozturk [2] found closed form solution for 

stresses and displacements in functionally 

graded cylindrical and spherical vessels 

subjected to internal pressure by using the 

infinitesimal theory of elasticity. The material 

stiffness obeying a power law is assumed to 

vary through the wall thickness and poisson’s 

ratio is assumed constant. Alavi, Karimi, and 

Bagri [3] reported work on the thermoelastic 

behavior of thick functionally graded hollow 

sphere under thermal and mechanical loads. The 

mechanical and thermal properties of FG sphere 

are assumed to be functions of radial 

coordinates. Two methods were used to estimate 

the effective mechanical properties of 

functionally graded sphere. One is the Rule of 

Mixture (R-M) scheme and another is Mori-

Tanaka scheme. Tutunku and Temel [4] 

analyzed displacements and stresses in 

axisymmetric geometries like functionally-

graded hollow cylinders, disks and spheres 

subjected to uniform internal pressure. They 

used plane elasticity theory and complementary 

functions method and assumed that the material 

is functionally graded in the radial direction. 

Chen and Lin [5] reported an alternative 

solution for the problems of thick-walled 

cylinders and spheres of functionally graded 

materials (FGMs). They defined two 

fundamental solutions from a numerical solution 

under two particular initial boundary conditions. 
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They also defined the transmission matrix for 

the single layer as well as multi-layered shells 

which relates the values of radial stress and 

displacement at the initial point to those at the 

end point of the layer. 

 

In recent work Anh, Bich, and Duc [6] worked 

on nonlinear stability analysis of thin annular 

spherical shells made of functionally graded 

materials (FGM) on elastic foundations under 

external pressure and temperature. Material 

properties are graded in the thickness direction 

according using a simple power law distribution 

in terms of the volume fractions of constituents. 

Kar and Panda [7] dealt with the linear and the 

nonlinear deformation analysis of functionally 

graded (FG) spherical shell panel under thermo-

mechanical load. The temperature dependent 

effective material properties of FG shell panel 

are evaluated using Voigt’s micro-mechanical 

rule in conjunction with power-law distribution. 

Tung [8] presented an analytical approach to 

analyze the nonlinear axisymmetric response of 

Functionally Graded (FG) Shallow Spherical 

Shells (SSSs) resting on elastic foundations 

which is exposed to thermal environment and 

subjected to uniform external pressure. Material 

properties are assumed to be temperature-

independent and graded in the thickness 

direction according to a simple power law 

distribution in terms of the volume fractions of 

constituents. 

 

In present research work rotating spherical 

pressure vessels under pressurized – free 

boundary condition is analyzed. Governing 

equations are derived by principle of 

stationary total potential. The shells are made 

of functionally graded material of aluminum 

metal and zirconia ceramic. Functional 

gradation of the material properties is done by 

Mori-Tanaka scheme. The effects of 

functional gradation of the material properties 

on the displacement and stresses of the shells 

for ceramic-metal FGM are presented. At the 

same time the effects of thickness parameter is 

also investigated and presented for some 

numerical problem. 
 

MATERIAL MODELING 

The effective bulk modulus and shear modulus 

of the FGM disk, evaluated using the Mori-

Tanaka scheme are given by [9]: 
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Here, V is the volume fraction of the phase 

material. The subscripts i and o refer to the 

inner and outer materials respectively. The 

volume fractions of the inner and outer phases 

are related by: 

1
i o

V V                                             (4) 

Where, Vo is expressed as 
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Where, x = r/ri and k = ro/ri, (which is a measure 

of thickness) n (n≥0) is the volume fraction 

exponent. The elastic modulus E can be found as: 
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The mass density ρ can be given by the rule of 

mixtures as: 
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PROBLEM FORMULATION 

Spherical shell is an axisymmetric body whose 

behavior is independent of coordinate θ of a 

cylindrical frame of reference (r, θ, z). 

Figure 1 shows the geometry of spherical 

vessel subjected to pressurized boundary 

condition at inner surface and free boundary 

condition at outer surface. Using quadratic 

quadrilateral element, the displacement vector 

{φ} can be obtained as [10]: 

      
T e

u v N                      (8) 

Where, u and v are the components of 

displacement in radial and axial direction 

respectively, [N] is the matrix of quadratic 

shape functions and {δ} is the nodal 

displacement vector, given as:  
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Fig. 1: Geometry of Spherical Shell. 

 

Shape functions in natural coordinates are given as: 
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The strain components are related to elemental displacement components as: 
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Where, εr, εθ, εz and γrz are radial, tangential, axial and shear strain respectively. By transforming the 

global coordinates into natural coordinates (ξ-η), 

   2

TT
u u v v u u u v v u

B
r z r z r r   

       
 

       

 
 
 

                                  (13) 

   3

T

eu u v v u
B

r


   

   
 

   

 
 
 

                                                                      (14) 

The above elemental strain-displacement relationships can be written as: 

    
e

B                                                                                                                   (15) 

Where [B] is strain-displacement relationship matrix, which contains derivatives of shape functions. 

For a quadratic quadrilateral element, it is calculated as: 
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Where, J is the Jacobian matrix, used to transform the global coordinates into natural coordinates. It is 

given as: 
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From generalized Hooks law, components of stresses in radial, tangential and axial direction (σr, σθ, 

σz and τrz) are related to components of total strain as: 
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In generalized matrix notation, stress-strain relation can be written as: 

     D r                                                                                                                    (24) 

 

Where, D(r) is stress-strain relationship matrix and is a function of radius r. 
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When the shell rotates, it experiences a distributed force over its volume. Under these forces when 

shell is properly supported, it undergoes deformation and stores internal strain energy U, which is 

given by: 
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The potential of external body and surface force is given by: 
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Using Eqs. (15) and (24) the element level equations can be obtained as: 
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The total potential of the element can be written as: 
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Defining element stiffness matrix [K]e and element load vector {f}e as: 
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Transforming global coordinates into natural coordinates: 
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Multilayer modeling of the geometry gives singular field variables at the boundaries of the glued 

areas. Therefore to assign the average material properties to the elements of mesh of the single 

geometry is a better approach. In other words it means assigning material properties to the finite 

elements instead of geometry. In Eq. (24), the [D(r)] matrix, is a function of r, which is calculated 

numerically at each node, which results into continuous material property distribution throughout the 

geometry. This is due to the fact that the shape functions in the elemental formulations being 

coordinate functions make it easier to implement the same [11]. 
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Where ϕe is element material property, ϕi is material property at node i and Ni is the shape function. 

Where, J is the Jacobian matrix, which is given by Eq. (19). Total potential energy of the shell is 

given by: 
e

p p
                                                                                                                                  (38) 

Using the principle of stationary total potential (PSTP) the total potential is set to be stationary with 

respect to small variation in the nodal degree of freedom that is: 
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Which gives system level equation for shell as:  
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RESULTS AND DISCUSSION 
Validation 

To validate the current work, problems of reference [4] are reconsidered and two types of material 

models are analyzed. Following equations are used for material modelling: 
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Where, V is the volume fraction, E is young’s modulus and ν is Poisson’s ratio, subscript ‘m’ refers to 

metal and ‘c’ refers to ceramic. x is non-dimensional radius that is r/a and k is the ratio of outer 

diameter to inner diameter that is b/a, where a and b are inner and outer radius respectively.  

In model 1, Poisson’s ratio is taken constant (0.333) and Young’s modulus varies according to 

Eq. (40) taking n=1, while in model 2, both Poisson’s ratio and Young’s modulus vary according to 

Eqs. (40) and (41) taking n=k=2. Material properties of the metal and ceramic used are: Em=200 GPa, 

Ec=360 GPa, νm=0.333, νc=0.2 and the vessels are subjected to unit internal pressure that is 1 GPa.  

 

  
Fig. 2: Comparison of the results of the current work with Reference; (a)Tangential stress  

 (b) Radial displacement [4]. 

 (a) (b) 
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Fig. 3: Distribution of Radial Displacement for 

Different values of n. 

Fig. 4: Distribution of Radial Stress for Different 

values of n. 

 

Figure 2(a) and (b) show the comparison of 

tangential stress and radial displacement with 

the results of reference respectively. It can be 

seen that both the results are in good 

agreement. 

 

Numerical Results 

Figures 3–6 show the distribution of radial 

displacement, radial stress, tangential stress 

and von Mises stress respectively for 

different values of grading parameter n taking 

k=2; while Figures 7–10 show the same 

distributions for different values of parameter 

k taking n=1. Shells are rotating with an 

angular velocity of 500 rad/s, subjected to 

unit internal pressure that is 1 GPa. Material 

is modeled by Mori-Tanaka scheme for which 

aluminium metal at outer surface and zirconia 

ceramic at inner surface is taken. Properties 

of aluminium and zirconia are as in Table 1 

[9]: where B and G denote bulk modulus and 

shear modulus respectively. 

Table 1: Material properties of the constituent 

materials. 
Material E (GPa) ρ (kg/m3) B(GPa) G(GPa) ν 

Aluminum 70 2700 58.333 26.9231 0.3 

Zirconia 151 5700 128.333 58.0769 0.3 

 

From Fig. 3 it can be seen that FGM shell 

having n = 0 has maximum radial 

displacement while the FGM shell having n = 

2 has minimum radial displacement. n = 0 

indicates homogeneous shell made of outer 

material that is material at r = ro. Radial 

displacement is minimum at the outer surface 

and maximum at the inner surface for all the 

shells. It is observed that radial displacement 

decreases with an increase in grading index n. 

Increasing n means volume fraction of the 

outer material (metal) is decreasing and inner 

material (ceramic) is increasing, which 

decreases radial displacement. 

 

  
Fig. 5: Distribution of Tangential Stress for 

Different values of n. 

Fig. 6: Distribution of von Mises Stress for 

Different values of n. 
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Fig. 7: Distribution of Radial Displacement for 

Different values of k. 

Fig. 8. Distribution of Radial Stress for Different 

values of k. 

  
Fig. 9: Distribution of Tangential Stress for 

Different values of k. 

Fig. 10: Distribution of von Mises Stress for 

Different values of k. 

 

From Figure 4, it is observed that radial stress 

is zero at the outer surface and maximum 

(equal to applied pressure) at the inner surface, 

which confirms the pressurized-free boundary 

condition applied on it. Radial stress is tensile 

and compressive both in nature but 

compressive stress is more as compared to 

tensile stress. Tensile nature increases with 

increasing n. FGM having grading parameter n 

= 2 has maximum tensile stress while FGM 

shell having value of grading parameter n = 0 

has maximum compressive stress. Tangential 

stress and von Mises stress both have same 

distribution pattern. Both are completely 

tensile and increases with increasing value of n 

due to increasing ceramic content in FGM. 

Homogeneous metallic shell has minimum 

tangential  and von Mises stress and FGM 

shell having grading index n = 2 has the 

maximum tangential  and von Mises stress.  

 

From Figure 7, it can be seen that shell having 

k=1.5 has minimum radial deformation and 

k=2.5 has maximum radial deformation. 

Therefore radial deformation increases with 

increasing value of parameter k. Radial stress 

is tensile and compressive both. Tensile radial 

stress is maximum for k=2.5 while 

compressive radial stress is maximum for 

k=1.5. Tangential stress and von Mises stress 

both are tensile only and k=1.5 has minimum 

tangential and von Mises stress.  

 

By comparing all the stresses it can be seen 

that von Mises stress is maximum for all 

values of grading index n and k as compared to 

radial and tangential stress. Therefore von 

Mises stress should be taken as stress criteria 

to design rotating spherical pressure vessels. 

Further it is observed that FGM shell having 

grading parameter n=0 and k=1.5 has the 

minimum von Mises stress; but n = 0 has 

highest deformation; therefore it is suggested 

to use the value of n in between 0 to 1 and k = 

1.5 for designing rotating spherical pressure 

vessel. 

 

CONCLUSION 

The present work proposes a study of rotating 

FGM spherical pressure vessel based on 

principle of stationary total potential. The 

effect of gradation of material properties on 
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stress and deformation states is investigated 

and presented in the form of graph for 

different values of grading parameter n and 

parameter k. The results obtained are found to 

be in good agreement with established reports. 

It is observed that there is a significant 

reduction in stresses and deformation behavior 

of the FGM shell as compared to 

homogeneous shell. It is suggested that 

ceramic-metal FGM shell having n between 0 

to 1 and k = 1.5 can be most effectively 

employed for the purpose of rotating spherical 

pressure vessels. 
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