Virtual Fabrication and Analog Performance of Sub-40nm Bulk MOSFET
Abstract
Virtual Fabrication of sub-40nm Bulk MOSFETÂ is carried out under channel engineering and source drain engineering process. These structures enable more aggressive device scaling in nano-scale region because of their ability to control short channel effects. How ever during scaling the junction depth should also be scaled down, which increases parasitic resistance so silicidation technique has been applied to reduce their effects on device. Analog performance has been measured in terms of gm, gds ,Av ,fT and fmax .The simulation result predict that gm is 3.75ms for engineered MOSFET as compared to non-engineered MOSFET with gm of 2.9ms for similar gate length, similarly Av for engineered device is 17.5db and for non-engineered device is 6.96db,fT is 146GHz and for non-engineered fT is 65GHz,fmax is 299GHz for engineered device and for non-engineered device fmaxis 170GHz and a comparison of an engineered device is done with a non engineered device to investigate the improved performance of an engineered device as compared to a non engineered device. Silvaco TCAD Tool is used for Virtual fabrication and simulation. ATHENA process simulator is used for virtual fabrication and ATLAS device simulator is used for device characterization.
Full Text:
PDFDOI: https://doi.org/10.37591/joedt.v1i1-3.4908
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Journal of Electronic Design Technology