Open Access Open Access  Restricted Access Subscription or Fee Access

A Comprehensive Survey on Massive MIMO Systems

V Arunarashmi, Dr. Shashidhara HR

Abstract


During the last decades with the mobile data traffic exponentially growing, demands for increased cell density or increased number of antennas per access point. Massive multiple input multiple output (MIMO) was found to be one of the solution for the ever increasing data traffic demand. However due to the inter cell interference and largely varying quality of service , massive MIMO lacks to meet the expectations of the demands of the sixth generation(6G). Cell-free massive MIMO is one of the key enabler in solving the said problems. In cell-free massive MIMO each user equipment (UE) is served by a set of surrounding access points (APs) cooperatively. This paper provides a survey of massive MIMO concept followed by significance of cell-free massive MIMO. A brief study of resource allocation and signal processing aspects of massive MIMO and cell-free massive MIMO is discussed. Future challenges and research problems are discussed

Full Text:

PDF

References


Cisco, “Visual Networking Index,” White paper, Feb. 2015 [Online].Available: www.Cisco.com.

Huawei Technologies Co. (2014). “document: eLTE2.2 DBS3900 LTEconfiguration principles,” [Online]. Available: http://e.huawei.com/au/marketing-material/onLineView?MaterialID=%7B7C9C0FCC-2359-4709-83C2-7E4F7C16A495%7D.

H. Holma, A. Toskala, and J. Reunanen, LTE Small Cell Optimization:3GPP Evolution to Release 13. Hoboken, NJ, USA: Wiley, 2015.

W. Stallings, Data and Computer Communications. Upper Saddle River,NJ, USA: Pearson/Prentice-Hall, 2007.

J. G. Andrews et al., “What will 5G be?” IEEE J. Sel. Areas Commun.,vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

F. Khan, Z. Pi, and S. Rajagopal, “Millimeter-wave mobile broadbandwith large scale spatial processing for 5G mobile communication,” inProc. 50th Annu. Allerton Conf. Commun. Control Comput. (Allerton),2012, pp. 1517–1523.

S. Chen and J. Zhao, “The requirements, challenges, and technologiesfor 5G of terrestrial mobile telecommunication,” IEEE Commun. Mag.,vol. 52, no. 5, pp. 36–43, May 2014.

3GPP. (2015). The Mobile Broadband Standard [Online]. Available:http://www.3gpp.org/news-events/3gpp-news/1674-timeline_5g.

Qualcomm Technologies, Inc., “Qualcomm’s 5G vision,” White paper,2014.

A. Osseiran et al., “Scenarios for 5G mobile and wireless communications:The vision of the METIS project,” IEEE Commun. Mag., vol. 52,no. 5, pp. 26–35, Dec. 2014.

Nokia Networks, “Looking ahead to 5G: Building a virtual zero latencygigabit experience,” White paper, 2014.

5G-Infrastructure Public-Private Partnership, 2013. [Online].Available: http://5g-ppp.eu/.

Panda, S. (2018). Performance optimization of cell-free massive MIMO system with power control approach. AEU-International Journal of Electronics and Communications, 97, 210-219.

Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., & Tufvesson, F. (2012). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE signal processing magazine, 30(1), 40-60.

Zhang, J., Chen, S., Lin, Y., Zheng, J., Ai, B., & Hanzo, L. (2019). Cell-free massive MIMO: A new next-generation paradigm. IEEE Access, 7, 99878-99888.

Hanzo, L., El-Hajjar, M., & Alamri, O. (2011). Near-capacity wireless transceivers and cooperative communications in the MIMO era: Evolution of standards, waveform design, and future perspectives. Proceedings of the IEEE, 99(8), 1343-1385.

Roy, R. H. (1997, May). Spatial division multiple access technology and its application to wireless communication systems. In 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion (Vol. 2, pp. 730-734). IEEE.

Wong, V. W. (Ed.). (2017). Key technologies for 5G wireless systems. Cambridge university press.

Morgado, A., Huq, K. M. S., Mumtaz, S., & Rodriguez, J. (2018). A survey of 5G technologies: regulatory, standardization and industrial perspectives. Digital Communications and Networks, 4(2), 87-97.

Zhang, J., Dai, L., Li, X., Liu, Y., & Hanzo, L. (2018). On low-resolution ADCs in practical 5G millimeter-wave massive MIMO systems. IEEE Communications Magazine, 56(7), 205-211.

Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE transactions on wireless communications, 9(11), 3590-3600.

Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE communications magazine, 52(2), 186-195.

Zhu, P., Li, J., Wang, D., & You, X. (2019). Large system performance and distributed scheme of downlink beamforming in F-RANs with distributed antennas. IEEE Access, 7, 33441-33453.

Zhu, P., Mao, H., Li, J., & You, X. (2018). Energy efficient joint energy cooperation and power allocation in multiuser distributed antenna systems with hybrid energy supply. IET Communications, 13(2), 153-161.

Venkatesan, S., Lozano, A., & Valenzuela, R. (2007, November). Network MIMO: Overcoming intercell interference in indoor wireless systems. In 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers (pp. 83-87). IEEE.

Irmer, R., Droste, H., Marsch, P., Grieger, M., Fettweis, G., Brueck, S., ... & Jungnickel, V. (2011). Coordinated multipoint: Concepts, performance, and field trial results. IEEE Communications Magazine, 49(2), 102-111.

You, X. H., Wang, D. M., Sheng, B., Gao, X. Q., Zhao, X. S., & Chen, M. (2010). Cooperative distributed antenna systems for mobile communications [coordinated and distributed MIMO]. IEEE Wireless Communications, 17(3), 35-43.

Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834-1850.

Buzzi, S., & D’Andrea, C. (2017). Cell-free massive MIMO: User-centric approach. IEEE Wireless Communications Letters, 6(6), 706-709.

Alonzo, M., & Buzzi, S. (2017, October). Cell-free and user-centric massive MIMO at millimeter wave frequencies. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1-5). IEEE.

Mai, T. C., Ngo, H. Q., Egan, M., & Duong, T. Q. (2018). Pilot power control for cell-free massive MIMO. IEEE Transactions on Vehicular Technology, 67(11), 11264-11268.

Ngo, H. Q., Tran, L. N., Duong, T. Q., Matthaiou, M., & Larsson, E. G. (2017). On the total energy efficiency of cell-free massive MIMO. IEEE Transactions on Green Communications and Networking, 2(1), 25-39.

Hajri, S. E., Denis, J., & Assaad, M. (2018, June). Enhancing favorable propagation in cell-free massive MIMO through spatial user grouping. In 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1-5). IEEE.

Attarifar, M., Abbasfar, A., & Lozano, A. (2019). Modified conjugate beamforming for cell-free massive MIMO. IEEE Wireless Communications Letters, 8(2), 616-619.

Zhang, X., Guo, D., An, K., & Zhang, B. (2019). Secure communications over cell-free massive MIMO networks with hardware impairments. IEEE Systems Journal.

Ngo, H. Q., Tran, L. N., Duong, T. Q., Matthaiou, M., & Larsson, E. G. (2017). On the total energy efficiency of cell-free massive MIMO. IEEE Transactions on Green Communications and Networking, 2(1), 25-39.

Bashar, M., Cumanan, K., Burr, A. G., Ngo, H. Q., Larsson, E. G., & Xiao, P. (2019). Energy efficiency of the cell-free massive MIMO uplink with optimal uniform quantization. IEEE Transactions on Green Communications and Networking, 3(4), 971-987.

El Misilmani, H. M., & El-Hajj, A. M. (2017, July). Massive MIMO design for 5G networks: an overview on alternative antenna configurations and channel model challenges. In 2017 International Conference on High Performance Computing & Simulation (HPCS) (pp. 288-294). IEEE.

Balanis, C. A. (2005). Antenna theory third edition analysis and design. John Wiley & Sons Inc, 811-842.

El Misilmani, H. M., & El-Hajj, A. M. (2017, July). Massive MIMO design for 5G networks: an overview on alternative antenna configurations and channel model challenges. In 2017 International Conference on High Performance Computing & Simulation (HPCS) (pp. 288-294). IEEE.

Ma, R., Gao, Y., Cuthbert, L., & Zeng, Q. (2014, July). Antipodal linearly tapered slot antenna array for millimeter-wave base station in massive MIMO systems. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI) (pp. 1121-1122). IEEE.

Gao, Y., Ma, R., Wang, Y., Zhang, Q., & Parini, C. (2016). Stacked patch antenna with dual-polarization and low mutual coupling for massive MIMO. IEEE Transactions on Antennas and Propagation, 64(10), 4544-4549.

Taluja, P. S., & Hughes, B. L. (2013). Diversity limits of compact broadband multi-antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 326-337.

Nam, Y. H., Ng, B. L., Sayana, K., Li, Y., Zhang, J., Kim, Y., & Lee, J. (2013). Full-dimension MIMO (FD-MIMO) for next generation cellular technology. IEEE Communications Magazine, 51(6), 172-179.

Doose, N., & Hoeher, P. A. (2015, February). Massive MIMO ultra-wideband communications using multi-mode antennas. In SCC 2015; 10th International ITG Conference on Systems, Communications and Coding (pp. 1-6). VDE.

Zhang, Q., Chen, Z., Gao, Y., Parini, C., & Ying, Z. (2014, July). Miniaturized Antenna Array with Co 2 Z Hexaferrite Substrate for Massive MIMO. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI) (pp. 1803-1804). IEEE.

Lau, B. K., & Leung, Y. H. (2000, May). A Dolph-Chebyshev approach to the synthesis of array patterns for uniform circular arrays. In 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No. 00CH36353) (Vol. 1, pp. 124-127). IEEE.

Domizioli, C. P. (2009). Noise analysis and low-noise design for compact multi-antenna receivers: A communication theory perspective.

Al-Husseini, M., Yaacoub, E., Baydoun, M., & Ghaziri, H. (2017, May). Independent control of the beamwidth and sidelobe level of Taylor one-parameter arrays. In 2017 Progress In Electromagnetics Research Symposium-Spring (PIERS) (pp. 3335-3339). IEEE.

Al-Husseini, M., Ghaziri, H., Yaacoub, E., & Kabalan, K. Y. (2017, July). Rectangular and circular arrays with independently controlled beamwidth and sidelobe level. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 1395-1396). IEEE.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Microwave Engineering and Technologies