Open Access Open Access  Restricted Access Subscription or Fee Access

Hybridization of Photovoltaic Panels and Thermoelectric Generators: Energy Efficiency Improvement

Carlos Armenta-Deu


Heat removal from PV panels has been revealed as a feasible and operational solution to reduce the temperature of the panel and increase energy efficiency. In this paper, the use of a thermoelectric generator (TEG) attached to the photovoltaic panel is proposed. A set of Peltier cells has been designed, built, and coupled to the rear side of a PV panel to remove the heat flow generated at the PV panel, converting this heat flow into electric energy. Peltier cells have been characterized to find out the working conditions that make the hybrid system, PV-TEG, operate at the optimum point. The characterization process has been applied to single cells as well as to serial and parallel coupling. Experimental tests have been run to verify the feasibility of the proposed methodology. Results from experimental tests have proven the validity of the hybridization and the improvement of the efficiency of the PV panel and the hybrid system. The efficiency improvement of the PV panel is 7% on average, from a minimum of 4.9% for low solar radiation to a maximum of 9.2% for the peak solar radiation value. The hybrid system increases this efficiency improvement up to 28% in the case of a fan-assisted TEG unit, with efficiency increases that reach 36.9% for the optimum operating conditions.


Hybrid photovoltaic system. Peltier cell. Performance improvement. Efficiency increase. Thermoelectric generation.

Full Text:



Sawle Y, Gupta SC, Bohre AK. Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system. Renew Sustain Energy Rev. 2018;81:2217–35. doi: 10.1016/j.rser.2017.06.033.

Awan AB, Zubair M, Praveen RP, Bhatti AR. Design and comparative analysis of photovoltaic and parabolic trough based CSP plants. Sol Energy. 2019;183:551–65. doi: 10.1016/j.solener.2019.03.037.

Awan AB, Zubair M, Memon ZA, Ghalleb N, Tlili I. Comparative analysis of dish Stirling engine and photovoltaic technologies: energy and economic perspective. Sustain Energy Technol Assess. 2021;44:101028. doi: 10.1016/j.seta.2021.101028.

Sovacool BK. A comparative analysis of renewable electricity support mechanisms for Southeast Asia. Energy. 2010;35(4):1779–93. doi: 10.1016/

Pang W, Cui Y, Zhang Q, Wilson GJ, Yan H. A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions. Renew Sustain Energy Rev. 2020;119:109599. doi: 10.1016/j.rser.2019.109599.

Dubey S, Sarvaiya JN, Seshadri B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – a Review. Energy Procedia. 2013;33:311–21. doi: 10.1016/j.egypro.2013.05.072.

Green MA. General temperature dependence of solar cell performance and implications for device modelling. Prog Photovolt Res Appl. 2003;11(5):333–40. doi: 10.1002/pip.496.

Klimov VI. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. J Phys Chem B. 2006;110(34):16827–45. doi: 10.1021/jp0615959.

Vidyanandan KV. An overview of factors affecting the performance of solar PV systems. Energy Scan;27(28):216.

Raga SR, Fabregat-Santiago F. Temperature effects in dye-sensitized solar cells. Phys Chem Phys. 2013;15(7):2328–36. doi: 10.1039/c2cp43220j.

Meneses-Rodríguez D, Horley PP, González-Hernández J, Vorobiev YV, Gorley PN. Photovoltaic solar cells performance at elevated temperatures. Sol Energy. 2005;78(2):243–50. doi: 10.1016/j.solener.2004.05.016.

Dupré O, Vaillon R, Green MA. Physics of the temperature coefficients of solar cells. Sol Energy Mater Sol Cells. 2015;140:92–100. doi: 10.1016/j.solmat.2015.03.025.

Radziemska E. The effect of temperature on the power drop in crystalline silicon solar cells. Renew Energy. 2003;28(1):1–12. doi: 10.1016/S0960–1481(02)00015–0.

Wysocki JJ, Rappaport P. Effect of temperature on photovoltaic solar energy conversion. J Appl Phys. 1960;31(3):571–8. doi: 10.1063/1.1735630.

Wehrenfennig C, Liu M, Snaith HJ, Johnston MB, Herz LM. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. Apl Mater. 2014;2(8):081513. doi: 10.1063/1.4891595.

Baruch P, De Vos A, Landsberg PT, Parrott JE. On some thermodynamic aspects of photovoltaic solar energy conversion. Sol Energy Mater Sol Cells. 1995;36(2):201–22. doi: 10.1016/0927–0248(95)80004–2.

Irwan YM, Leow WZ, Irwanto M, Amelia AR, Gomesh N, Safwati I. Analysis air cooling mechanism for photovoltaic panel by solar simulator. Int J Electr Comput Eng (2088–8708). 2015;5(4).

Grubišić-Čabo F, Nižetić S, Giuseppe Marco T. Photovoltaic panels: a review of the cooling techniques. Trans FAMENA. 2016;40(SI-1):63–74.

Chandrasekar M, Senthilkumar T. Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling. Heat Mass Transfer. 2016;52(7):1381–91. doi: 10.1007/s00231–015–1661–9.

Smith MK, Selbak H, Wamser CC, Day NU, Krieske M, Sailor DJ et al. Water cooling method to improve the performance of field-mounted, insulated, and concentrating photovoltaic modules. J Sol Energy Eng. 2014;136(3). doi: 10.1115/1.4026466.

Santhakumari M, Sagar N. A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: failure detection methods and essential mitigation techniques. Renew Sustain Energy Rev. 2019;110:83–100. doi: 10.1016/j.rser.2019.04.024.

Navakrishnan S, Vengadesan E, Senthil R, Dhanalakshmi S. An experimental study on simultaneous electricity and heat production from solar PV with thermal energy storage. Energy Convers Manag. 2021;245:114614. doi: 10.1016/j.enconman.2021.114614.

van Helden WGJ, van Zolingen RJC, Zondag HA. PV thermal systems: PV panels supplying renewable electricity and heat. Prog Photovolt Res Appl. 2004;12(6):415–26. doi: 10.1002/pip.559.

Abd-Elhady MS, Serag Z, Kandil HA. An innovative solution to the overheating problem of PV panels. Energy Convers Manag. 2018;157:452–9. doi: 10.1016/j.enconman.2017.12.017.

Xu H, Wang N, Zhang C, Qu Z, Karimi F. Energy conversion performance of a PV/T-PCM system under different thermal regulation strategies. Energy Convers Manag. 2021;229:113660. doi: 10.1016/j.enconman.2020.113660.

Xu B, Li P, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy. 2015;160:286–307. doi: 10.1016/j.apenergy.2015.09.016.

Akshayveer A, Kumar AP, Pratap Singh A, Sreeram Kotha R, Singh OP. Thermal energy storage design of a new bifacial PV/PCM system for enhanced thermo-electric performance. Energy Convers Manag. 2021;250:114912. doi: 10.1016/j.enconman.2021.114912.

Jouhara H, Milko J, Danielewicz J, Sayegh MA, Szulgowska-Zgrzywa M, Ramos JB et al. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material. Energy. 2016;108:148–54. doi: 10.1016/

Nižetić S, Jurčević M, Čoko D, Arıcı M. A novel and effective passive cooling strategy for photovoltaic panel. Renew Sustain Energy Rev. 2021;145:111164. doi: 10.1016/j.rser.2021.111164.

Nižetić S, Čoko D, Yadav A, Grubišić-Čabo F. Water spray cooling technique applied on a photovoltaic panel: the performance response. Energy Convers Manag. 2016;108:287–96. doi: 10.1016/j.enconman.2015.10.079.

Li R, Shi Y, Wu M, Hong S, Wang P. Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat Sustain. 2020;3(8):636–43. doi: 10.1038/s41893–020–0535–4.

Kane A, Verma V, Singh B. Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel. Renew Sustain Energy Rev. 2017;75:1295–305. doi: 10.1016/j.rser.2016.11.114.

Arifin Z, Tjahjana DDDP, Hadi S, Rachmanto RA, Setyohandoko G, Sutanto B. Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks. Int J Photoenergy. 2020;2020:1–9. doi: 10.1155/2020/1574274.

Amelia AR, Irwan YM, Irwanto M, Leow WZ, Gomesh N, Safwati I et al. Cooling on photovoltaic panel using forced air convection induced by DC fan. Int J Electr Comput Eng. 2016;6(2):526. doi: 10.11591/ijece.v6i2.pp526–534’

Popovici CG, Hudişteanu SV, Mateescu TD, Cherecheş NC. Efficiency improvement of photovoltaic panels by using air cooled heat sinks. Energy Procedia. 2016;85:425–32. doi: 10.1016/j.egypro.2015.12.223.

Peng Z, Herfatmanesh MR, Liu Y. Cooled solar PV panels for output energy efficiency optimisation. Energy Convers Manag. 2017;150:949–55. doi: 10.1016/j.enconman.2017.07.007.

Babu C, Ponnambalam P. The theoretical performance evaluation of hybrid PV-TEG system. Energy Convers Manag. 2018;173:450–60. doi: 10.1016/j.enconman.2018.07.104.

Kidegho G, Njoka F, Muriithi C, Kinyua R. Evaluation of thermal interface materials in mediating PV cell temperature mismatch in PV–TEG power generation. Energy Rep. 2021;7:1636–50. doi: 10.1016/j.egyr.2021.03.015.

Darkwa J, Calautit J, Du D, Kokogianakis G. A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells. Appl Energy. 2019;248:688–701. doi: 10.1016/j.apenergy.2019.04.147.

Khattab NM, El Shenawy ET. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energy Convers Manag. 2006;47(4):407–26. doi: 10.1016/j.enconman.2005.04.011.

Najafi H 2012. Evaluation of alternative cooling techniques for photovoltaic panels (Doctoral dissertation, University of Alabama Libraries).

Kiflemariam R, Almas M, Lin C. Modeling Integrated thermoelectric generator-photovoltaic thermal (TEG-PVT) system. In: Proceedings of the 2014 COMSOL conference; 2014. p. 1–5.

Ruzaimi A, S S, Hassan WZW, Azis N, Ya’acob ME, Elianddy E et al. Performance analysis of thermoelectric generator implemented on non-uniform heat distribution of photovoltaic module. Energy Rep. 2021;7:2379–87. doi: 10.1016/j.egyr.2021.04.029.

Saleh UA, Johar MA, Jumaat SAB, Rejab MN, Wan Jamaludin WAW. Evaluation of a PV-TEG hybrid system configuration for an improved energy output: a review. Int J Renew Energy Dev. 2021;10(2):385–400. doi: 10.14710/ijred.2021.33917.

Pourkiaei SM, Ahmadi MH, Sadeghzadeh M, Moosavi S, Pourfayaz F, Chen L et al. Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials. Energy. 2019;186:115849. doi: 10.1016/

Saleh UA, Johar MA, Jumaat SA, Rejab MN, Wan Jamaludin WA. Evaluation of a hybrid PV-TEG system configuration for enhanced energy performance: a review. Int J Renew Energy Dev. 2021;2(2):385–401.

Teffah K, Zhang Y. Modeling and experimental research of hybrid PV-thermoelectric system for high concentrated solar energy conversion. Sol Energy. 2017;157:10–9. doi: 10.1016/j.solener.2017.08.017.

He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Appl Energy. 2015;143:1–25. doi: 10.1016/j.apenergy.2014.12.075.

Metwally H, Mahmoud NA, Aboelsoud W, Ezzat M. Yearly performance of the photovoltaic active cooling system using the thermoelectric generator. Case Stud Therm Eng. 2021;27:101252. doi: 10.1016/j.csite.2021.101252.

Sahin AZ, Ismaila KG, Yilbas BS, Al-Sharafi A. A review on the performance of photovoltaic/thermoelectric hybrid generators. Int J Energy Res. 2020;44(5):3365–94. doi: 10.1002/er.5139.

Sripadmanabhan Indira SS, Vaithilingam CA, Chong KK, Saidur R, Faizal M, Abubakar S et al. A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system. Sol Energy. 2020;201:122–48. doi: 10.1016/j.solener.2020.02.090.

Babu C, Ponnambalam P. The role of thermoelectric generators in the hybrid PV/T systems: a review. Energy Convers Manag. 2017;151:368–85. doi: 10.1016/j.enconman.2017.08.060.

Kwan TH, Wu X. Power and mass optimization of the hybrid solar panel and thermoelectric generators. Appl Energy. 2016;165:297–307. doi: 10.1016/j.apenergy.2015.12.016.

Khenfer R, Benahdouga S, Meddad M, Mostefai M, Eddiai A, Benkhouja K. Effect of temperature on the PV cells and improving their performance by the use of thermo generators. Mol Cryst Liq Cryst. 2016;627(1):23–8. doi: 10.1080/15421406.2015.1137141.

Huen P, Daoud WA. Advances in hybrid solar photovoltaic and thermoelectric generators. Renew Sustain Energy Rev. 2017;72:1295–302. doi: 10.1016/j.rser.2016.10.042.

Bjørk R, Nielsen KK. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system. Sol Energy. 2015;120:187–94. doi: 10.1016/j.solener.2015.07.035.

Tem construction (thermoelectric cooler construction); n.d. Kryotherm [cited Apr 6, 2023]. Available from:


Freire LO, Navarrete LM, Corrales BP, Castillo JN. Efficiency in thermoelectric generators based on Peltier cells. Energy Rep. 2021;7:355–61. doi: 10.1016/j.egyr.2021.08.099.

Casano G, Piva S. Experimental investigation of the performance of a thermoelectric generator based on Peltier cells. Exp Therm Fluid Sci. 2011;35(4):660–9. doi: 10.1016/j.expthermflusci.2010.12.016.

Kolber P, Perczyński D, Peszyński K, Landowski B. Efficiency testing of thermoelectric cooling cell based on Peltier module. Eng Mech. 2018:14–7.

TEC. 1–12710 Thermoelectric Cooler Datasheet. HB Electronic Components [cited 21/11/2021]. Available from:

YES Energy Solutions. How much energy do solar panels produce for your home? (Online) Available from:,1%20kW%20


Prudhvi P, Chaitanya Sai PC. Efficiency improvement of solar PV panels using active cooling. In: 11th International Conference on Environment and Electrical Engineering. Vol. 2012. IEEE Publications; 2012, May. p. 1093–7. doi: 10.1109/EEEIC.2012.6221543.

Yang D, Yin H. Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Trans Energy Convers. 2011;26(2):662–70. doi: 10.1109/TEC.2011.2112363.

Enescu D. Thermoelectric Energy Harvesting: basic principles and applications. IntechOpen; 2019. [online] Available from:

Thermoelectrics handbook: macro to Nano, D.M. Rowe. CRC Press; 2005.

Introducción a la termoelectricidad. (Online) Available from:

Experimental comparison of parametric characterization methods for thermoelectric generators, Reginal D [Pierce thesis]. Rochester Institute of Technology; May 2015.

Modelado de una célula de Peltier 2004. Departamento de electrónica, automática e informática industrial. Universidad Politécnica de Madrid.

D.M. Rowe. Thermoelectrics handbook: macro to Nano. CRC Press; 2005.

Heat and mass transfer: fundamentals and Applications¸ Yunus A. Çengel; Afshin j. Ghajar. McGraw-Hill, 2011.

Thermoelectric materials, phenomena, and applications: A bird’s eye view, Terry M. Tritt and M.A. Subramanian. MRS Bull. 2006;31(March).

Photovoltaic solar systems. Master Course on Energy. Faculty of Physics. Complutense University of Madrid; 2021.

[cited 7/3/2022]Available from:

Photovoltaic solar energy. Master Course on Energy. Faculty of Physics. Complutense University of Madrid; 2021.

Ma T, Yang H, Zhang Y, Lu L, Wang X. Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: a review and outlook. Renew Sustain Energy Rev. 2015;43:1273–84. doi: 10.1016/j.rser.2014.12.003.

Armenta-Déu C, Mosquera L. Heat Sink-PCM Device for PV efficiency Improvement. JoTEA. 2021;8(2):35–48. doi: 10.37591/jotea.v8i2.5883.

Armenta-Déu C. Analysis of the Performance of a PV-PCM System in variable Solar Radiation Conditions. J Alternate Energy Sources Technol. 2021;12(1):1–20. doi: 10.37591/joaest.v12i1.4423.

Luque A, Hegedus S. Handbook of photovoltaic science and engineering. 2nd ed, John Wiley and Sons, Ltd. (2010), DOI:10.1002/9780470974704.

Goetzberger A, Hoffmann VU. Photovoltaic solar energy generation. Berlin: Springer; 2005.

Olukan TA, Emziane M. A comparative analysis of PV module temperature models. Energy Procedia. 2014;62:694–703. doi: 10.1016/j.egypro.2014.12.433.


  • There are currently no refbacks.

Copyright (c) 2022 Journal of Microwave Engineering and Technologies