Ab Initio Investigation on Half-Heusler Compounds CoVZ (Z = P, Bi, Sb, As): Understanding Structural, Electronic, Magnetic, and Elastic Behavior

Pardeep Kumar Jangra, Anshul Singh, Sukhender .


The structural, electrical, mechanical, and magnetic properties of Half-Heusler CoVZ (Z= P, Bi, Sb, and As) compounds have been studied using the ab initio method. Here, we use the full potential linearized augmented plane wave (FP-LAPW) method, which is implemented by WIEN2k. The compounds CoVZ (Z= P, Bi, Sb, and As) are near to the Fermi level as implemented in the WIEN2k algorithm, exhibiting 100% spin polarization with finite band gaps of 0.61, 0.67, 0.65, and 0.68 eV, respectively. These materials are found to have semiconducting properties. The calculated magnetic moments of these compounds, CoVZ (Z= P, Bi, Sb, and As), are 1.31, 1.35, 1.27, and 1.20 μB. Here, we observe that the computed results of the algorithm and the Slater-Pauling rule have great tuning. The investigation leads us to the conclusion that every compound—aside from CoVAs and CoVSb—is ductile. A measure of a material's stiffness and flexibility is the bond index, denoted by the notation CP = C12 - C44. The same kind of result is shown by Cauchy pressure and Pugh's ratio. Covalent character is indicated by CoVAs' poisson ratio. Materials can be compared by placing them in decreasing order of hardness, for instance, CoVP > CoVBi > CoVSb > CoVAs.


Spintronics, Semiconducting, Band gap, Density of State, Magnetic Moment


Dr. Fr. Heusler, Dr. E. Take, The nature of the heusler alloys, Trans. Faraday Soc. 8 (1912) 169-184.

J. Li, Y. Li, G. Zhou, Y. Sun, and C. Q. Sun, A first Principles study on the full Heusler compound Cr2MnAl, Appl. Phys. Lett. 94(2009), 242502

F. Casper, T. Graf, S. Chadov, B. Balke and C. Felser, Half- Heusler compounds: novel materials for energy and spintronic applications, Semicond. Sci. Technol. 27 (2012) 063001.

R.A. De Groot, F.M. Muller, P.G.Van Engen and K.H.J. Buschow, New class of materials: half-metallic ferrowmagnets, Phys. Rev. Lett. 50 (1983) 2024-2027.

S. A. Khandya , I. Islamb , D. C. Guptac and A. Laref, Full Heusler alloys (Co2TaSi and Co2TaGe) as potential spintronic materials with tunable band profiles, J. Solid State Chem., 270 (2019) 173-179.

T. Graf, C. Felser and S. S.P. Parkin, Simple rules for the understanding of Heusler compounds,Prog. Solid State Chem. 39 (2011) 1-50.

C. Felser, L. Wollmann, S. Chadov, G. H. Fecher, and S. S. P. Parkin, Basics and prospective of magnetic Heusler Compounds, APL Mater. 3 (2015) 041518.

K. Endo, Magnetic Studies of Clb-Compounds CuMnSb, PdMnSb and Cu1-x (Ni or Pd)x MnSb. J. Phys. Soc. Jpn. 29, 643 (1970).

J. Friedel,The use of positrons for the study of solids. Nuovo Cimento 7 (1958) 287.

K. Watanabe, Magetic Properties of Clb-Type Mn Base Compounds. Trans. Jpn. Inst. Met. 17, 220 (1976).

G. Mima, Kinzokusoshikigaku (Metallography), Asakurasyoten, (1960) 600.

R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow.New class of materials: half-metallic ferromagnets.Phys. Rev. Lett. 50, 2024 (1983).

A. R. Williams, J. Kubler, and C. D. Gelatt, Jr., Cohesive properties of metallic compounds: Augmented-spherical-wave calculations. Phys. Rev. B 19, 6094 (1979).

M. Methfessel and J. Kiibler, Bond analysis of heats of formation: application to some group VIII and IB hydrides. J. Phys. F 12, 141 (1982).

G.L. Bona, F. Meier, M. Taborelli, E. Bucher, P.H. Schmidt, Spin polarized photoemission from NiMnSb. Solid State Commun. 56, 391(1985).

Y. Miura, K. Nagao and M. Shirai, Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr1−xFex) Al: A first-principles study, Phys. Rev. B 69 (2004) 144413.

J. Ku¨bler, G. H. Fecher, C. Felser, Understanding the trend in the Curie temperatures of Co2- based Heusler compounds: Ab initio calculations. Phys. Rev. B 76 (2007) 024414

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Spintronics: a spin-based electronics vision for the future, Science, 294 (2001) 1488-1495.

E. Şaşıoğlu, L. M. Sandratskii, P. Bruno, I. Galanakis, Exchange Interactions and Temperature Dependence of Magnetization in half-Metallic Heusler Alloys, Phys. Rev. B., 72 (2005) 184415.

S. Wurmehl, G. H. Fechel, H. C. Kandpal, V. Ksenofontov, C. Felser, H. Lin, Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment, Appl. Phys. Lett., 88 (2006) 032503.

Sukhender, Lalit Mohan, Sudesh Kumar, Deepak Sharma, Ajay Singh Verma, Structural, electronic, optical and magnetic properties of Co2CrZ (Z= Al, Bi, Ge, Si) Heusler compounds, East Eur. J. Phys. 2 (2020) 69-80. https://doi.org/10.26565/2312-4334-2020-2-05

Sukhender, Pravesh Pravesh, Lalit Mohan, Ajay Singh Verma, Ductile and metallic nature of Co2VZ (Z= Pb, Si, Sn) Heusler compounds: a first principles study, East Eur. J. Phys., 3 (2020) 99-110. https://doi.org/10.26565/2312-4334-2020-3-13

Sukhender, Pravesh Pravesh, Lalit Mohan, Ajay Singh Verma, First principles calculations for electronic, optical and magnetic properties of full heusler compounds,East Eur. J. Phys. 3 (2020) 111-121. https://doi.org/10.26565/2312-4334-2020-3-14

Sukhender, Lalit Mohan, Ajay Singh Verma, Electronic, optical, elastic and magnetic properties of Co2VZ (Z= As, B, In, Sb) Heusler compounds, East Eur. J. Phys., 4 (2020) 51-62. https://doi.org/10.26565/2312-4334-2020-4-07

F. Gregor, K. Perter, Ternary semiconductors NiZrSn and CoZrBi with half- Heusler structure: A first-principles study. Phys. Rev. B. 94 (2016) 075203.

C. K. Barman, A. Alam, Topological phase transition in the ternary half-Heusler alloy ZrIrBi. Phys. Rev. B. 97 (2018) 075302.

S. Ishida, S. Akazawa, Y. Kubo, J. Ishida, Band theory of Co2MnSn, Co2TiSn and Co2TiAl, J. Phys. F: Met. Phys. 12 (1982) 1111.

J. Ku¨bler, A.R. William, C.B. Sommers, Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B 28 (1983) 1745-1755.

A. Sozinov, A.A. Likhochev, N. Lanska and Ullakko. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett., 80 (2002) 1746.

J. Marcos, L. Manosa, A. Planes, F. Casanova, X. Batlle, and A. Labarta. Mul tiscale origin of the magnetocaloric effect in Ni-Mn-Ga shape-memory alloys. Phys. Rev. B, 68 (2003) 094401.

A. Planes, L. Manosa and M. Acet. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys., Condens. Matter 21, 233201 (2009).

A. N. Vasil'ev. Shape memory ferromagnets. Phys.-Usp. 46 (2003) 559.

J. Pons, E. Cesari, C. Segn, F. Masdeu, R. Santamarta. Ferromagnetic shape memory alloys: Alternatives to NiMnGa. Mat. Sci. Eng., 57 (2008) A 481482.

C. M. Fang, G. A. d. Wijs and R. A. d. Groot, Spin-polarization in half-metals (invited), J. Appl. Phys. 91(2002) 8340-8344.

M. Bowen, A. Barthélémy, M. Bibes, E. Jacquet, J. P. Contour, A. Fert, D. Wortmann and S. Blügel, Half-metallicity proven using fully spin-polarized tunnelling, J. Phys., Condens. Matter, 17 (2005) 407.

R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry and J. M. D. Coey, Measuring the spin polarization of a metal with a superconducting point contact, Science, 282 (1998) 85-88.

J. C. Slater, The Ferromagnetism of Nickel, Phys. Rev. 49 (1936) 537-545.

L. Pauling, The Nature of the Interatomic Forces in Metals, Phys. Rev. 54 (1938) 899-904.

H. Ohno, A window on the future of spintronics, Nature Materials, 9 (2010) 952-954.


  • There are currently no refbacks.

Copyright (c) 2024 Journal of Microelectronics and Solid State Devices