Open Access Open Access  Restricted Access Subscription or Fee Access

A Review on Polysaccharide Based Nanocomposite Hydrogel Systems Fabrication Using Diverse Reinforcing Materials

Nisha Sharma, Vikrant Singh Rana


In current scenario, materials with better physicochemical properties are desirable to achieve quality life and sustainability. Polysaccharide/biopolymeric based hydrophilic systems owning to their inherent properties especially hydrophilicity, nontoxicity, biocompatibility  have extended their approach in every streta of biomedical Sciences and replaced synthetic polymers upto great extent. Despite this they also experienced certain demerits due to their biological origin. Functionalization of polysaccharide based hydrophilic polymer with reinforcing materials /modulators  especially in nano-dimensions is one of such approach getting much attension in current scenario. Although great deal of work have been published in nanocomposite hydrogels but least attention was paid for polysaccharide based nanocomposite hydrophilic systems. Present study is an attempt to compile a brief account of fabrication of polysaccharide based nanocomposites using metallic nanoparticles, metallic oxides, CNT and graphene, clay  as   nanofillers  with improved physicochemical as well as biological properties.


Hydrogel, nanocomposite hydrogel, polysaccharides, reinforcing materials, Physicochemical properties, nanofillers, sustainability

Full Text:



Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced drug delivery reviews, 64, 18-23.

Padil, V. V. T., Wacławek, S., & Černík, M. (2016). Green synthesis: nanoparticles and nanofibres based on tree gums for environmental applications. Ecological Chemistry and Engineering S, 23(4), 533-557.

Shah, M., Fawcett, D., Sharma, S., Tripathy, S., & Poinern, G. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308.

Padil, V. V. T., & Černík, M. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine, 8, 889.

Zare-Akbari, Z., Farhadnejad, H., Furughi-Nia, B., Abedin, S., Yadollahi, M., & Khorsand-Ghayeni, M. (2016). PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. International journal of biological macromolecules, 93, 1317-1327.

Beachley, V., Ma, G., Papadimitriou, C., Gibson, M., Corvelli, M., & Elisseeff, J. (2018). Extracellular matrix particle–glycosaminoglycan composite hydrogels for regenerative medicine applications. Journal of Biomedical Materials Research Part A, 106(1), 147-159

Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in polymer science, 37(1), 106-126.

Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in polymer science, 31(7), 603-632.

Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), 1-27.

Kumar, M. R., Muzzarelli, R., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical reviews, 104(12), 6017-6084.

Imeson, A. P. (2000). Carrageenan. Handbook of hydrocolloids, 87-102.

Necas, J., & Bartosikova, L. (2013). Carrageenan: a review. Veterinarni Medicina, 58(4).

Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358-3393.

Tunç, S., & Duman, O. (2010). Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Applied Clay Science, 48(3), 414-424.

Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative food science & emerging technologies, 11(4), 697-70

Defaye, J., & Wong, E. (1986). Structural studies of gum arabic, the exudate polysaccharide from Acacia senegal. Carbohydrate Research, 150(1), 221-231.

Chudzikowski, R. J. (1971). Guar gum and its applications. J Soc Cosmet Chem, 22(1), 43.

Wang, X., Wang, J., Zhang, J., Zhao, B., Yao, J., & Wang, Y. (2010). Structure–antioxidant relationships of sulfated galactomannan from guar gum. International Journal of Biological Macromolecules, 46(1), 59-66.

Mirhosseini, H., & Amid, B. T. (2012). A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Research International, 46(1), 387-398.

Misaki, A. (1994). Structural aspects of some functional polysaccharides. In Food hydrocolloids (pp. 1-19). Springer, Boston, MA.

Eliasson, A. C. (Ed.). (2004). Starch in food: Structure, function and applications. CRC Press.

Yu, H., & Huang, Q. (2010). Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chemistry, 119(2), 669-674.

Tischer, C. A., Iacomini, M., & Gorin, P. A. (2002). Structure of the arabinogalactan from gum tragacanth (Astralagus gummifer). Carbohydrate research, 337(18), 1647-1655.

Aspinall, G. O., & Baillie, J. (1963). 318. Gum tragacanth. Part I. Fractionation of the gum and the structure of tragacanthic acid. Journal of the Chemical Society (Resumed), 1702-1714.

Wang, W. (2000). Tragacanth and karaya. Handbook of hydrocolloids, 231-246.

Izydorczyk, M., Cui, S. W., & Wang, Q. (2005). Polysaccharide gums: structures, functional properties, and applications. Food carbohydrates: Chemistry, physical properties, and applications, 293-299.

An, J., Ji, Z., Wang, D., Luo, Q., & Li, X. (2014). Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities. Materials Science and Engineering: C, 36, 33-41.

Wang, C., Gao, X., Chen, Z., Chen, Y., & Chen, H. (2017). Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymers, 9(12), 689.

Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in polymer science, 37(1), 106-126.

Deng, Z., Guo, Y., Zhao, X., Ma, P. X., & Guo, B. (2018). Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chemistry of Materials, 30(5), 1729-1742.

Yang, J., Liu, S., Xiao, Y., Gao, G., Sun, Y., Guo, Q., & Fu, J. (2016). Multi-responsive nanocomposite hydrogels with high strength and toughness. Journal of Materials Chemistry B, 4(9), 1733-1739.

Iglesias, D., Bosi, S., Melchionna, M., Da Ros, T., & Marchesan, S. (2016). The glitter of carbon nanostructures in hybrid/composite hydrogels for medicinal use. Current topics in medicinal chemistry, 16(18), 1976-1989.

Sengur-Tasdemir, R., Mokkapati, V. R., Koseoglu-Imer, D. Y., & Koyuncu, I. (2018). Effect of polymer type on characterization and filtration performances of multi-walled carbon nanotubes (MWCNT)-COOH-based polymeric mixed matrix membranes. Environmental technology, 39(10), 1226-1237.

Farshid, B., Lalwani, G., Shir Mohammadi, M., Srinivas Sankaran, J., Patel, S., Judex, S., Sitharaman, B. (2019). Two‐dimensional graphene oxide reinforced porous biodegradable polymeric nanocomposites for bone tissue engineering. Journal of Biomedical Materials Research Part A.

Ahmed, J. (2019). Recent Advances of Novel Materials for 3D/4D Printing in Biomedical Applications. 3D and 4D Printing in Biomedical Applications: Process Engineering and Additive Manufacturing, 239-271.

Juby, K. A., Dwivedi, C., Kumar, M., Kota, S., Misra, H. S., & Bajaj, P. N. (2012). Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohydrate polymers, 89(3), 906-913.

Jaouen, V., Brayner, R., Lantiat, D., Steunou, N., & Coradin, T. (2010). In situ growth of gold colloids within alginate films. Nanotechnology, 21(18), 185605.

Arora, D., Dhanwal, V., Nayak, D., Saneja, A., Amin, H., ur Rasool, R., ... & Goswami, A. (2016). Preparation, characterization and toxicological investigation of copper loaded chitosan nanoparticles in human embryonic kidney HEK-293 cells. Materials Science and Engineering: C, 61, 227-234.

Laudenslager, M. J., Schiffman, J. D., & Schauer, C. L. (2008). Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromolecules, 9(10), 2682-2685.

Sharma, R., Singh, N., Tiwari, S., Tiwari, S. K., & Dhakate, S. R. (2015). Cerium functionalized PVA–chitosan composite nanofibers for effective remediation of ultra-low concentrations of Hg (II) in water. Rsc Advances, 5(22), 16622-16630.

Shrifian-Esfahni, A., Salehi, M. T., Nasr-Esfahni, M., & Ekramian, E. (2015). Chitosan-modified superparamgnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. Chemik, 69(1), 19-32.

Karthiga Devi, G., Senthil Kumar, P., & Sathish Kumar, K. (2016). Green synthesis of novel silver nanocomposite hydrogel based on sodium alginate as an efficient biosorbent for the dye wastewater treatment: prediction of isotherm and kinetic parameters. Desalination and Water Treatment, 57(57), 27686-27699.

Rao, K. M., Kumar, A., Haider, A., & Han, S. S. (2016). Polysaccharides based antibacterial polyelectrolyte hydrogels with silver nanoparticles. Materials Letters, 184, 189-192.

Rao, K. M., Kumar, A., Rao, K. S. V. K., Haider, A., & Han, S. S. (2018). Biodegradable Tragacanth Gum Based Silver Nanocomposite Hydrogels and Their Antibacterial Evaluation. Journal of Polymers and the Environment, 26(2), 778-788.

Sanyasi, S., Majhi, R. K., Kumar, S., Mishra, M., Ghosh, A., Suar, M., & Goswami, L. (2016). Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Scientific reports, 6, 24929.

Agnihotri, S., Mukherji, S., & Mukherji, S. (2012). Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Applied Nanoscience, 2(3), 179-188

Krstić, J., Spasojević, J., Radosavljević, A., Šiljegovć, M., & Kačarević-Popović, Z. (2014). Optical and structural properties of radiolytically in situ synthesized silver nanoparticles stabilized by chitosan/poly (vinyl alcohol) blends. Radiation Physics and Chemistry, 96, 158-166.

Abdullah, M. F., Ghosh, S. K., Basu, S., & Mukherjee, A. (2015). Cationic guar gum orchestrated environmental synthesis for silver nano-bio-composite films. Carbohydrate polymers, 134, 30-37.

Padil, V. V. T., Nguyen, N. H., Ševců, A., & Černík, M. (2015). Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum karaya, polyvinyl alcohol, and silver nanoparticles. Journal of Nanomaterials, 2015, 9.

Djerahov, L., Vasileva, P., Karadjova, I., Kurakalva, R. M., & Aradhi, K. K. (2016). Chitosan film loaded with silver nanoparticles—sorbent for solid phase extraction of Al (III), Cd (II), Cu (II), Co (II), Fe (III), Ni (II), Pb (II) and Zn (II). Carbohydrate polymers, 147, 45-52.

Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packaging and Shelf Life, 10, 16-24.

Singh.B., Kumar.A., Singh.B., & Rajneesh (2018). Development of silver particle impregnated hydrogelby radiation induced crosslinking for wound dressing applications. American journal of drug delivery and therapeutics, 5.

Rao, K. M., Kumar, A., Suneetha, M., & Han, S. S. (2018). pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. International journal of biological macromolecules, 112, 119-125.

Giammanco, G. E., Carrion, B., Coleman, R. M., & Ostrowski, A. D. (2016). Photoresponsive polysaccharide-based hydrogels with tunable mechanical properties for cartilage tissue engineering. ACS applied materials & interfaces, 8(23), 14423-14429

Al-Enizi, A. M., Ahamad, T., Al-hajji, A. B., Ahmed, J., Chaudhary, A. A., & Alshehri, S. M. (2018). Cellulose gum and copper nanoparticles based hydrogel as antimicrobial agents against urinary tract infection (UTI) pathogens. International journal of biological macromolecules, 109, 803-809.

Muraleedaran, K., & Mujeeb, V. A. (2015). Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. International journal of biological macromolecules, 77, 266-272.

Archana, D., Singh, B. K., Dutta, J., & Dutta, P. K. (2015). Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. International journal of biological macromolecules, 73, 49-57.

Fan, X., Chen, K., He, X., Li, N., Huang, J., Tang, K., ... & Wang, F. (2016). Nano-TiO2/collagen-chitosan porous scaffold for wound repairing. International journal of biological macromolecules, 91, 15-22.

Baghaie, S., Khorasani, M. T., Zarrabi, A., & Moshtaghian, J. (2017). Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. Journal of Biomaterials Science, Polymer Edition, 28(18), 2220-2241.

Kodoth, A. K., Ghate, V. M., Lewis, S. A., & Badalamoole, V. (2018). Application of pectin zinc oxide hybrid nanocomposite in the delivery of a hydrophilic drug and a study of its isotherm, kinetics and release mechanism. International journal of biological macromolecules, 115, 418-430.

Pathania, D., Katwal, R., Sharma, G., Naushad, M., Khan, M. R., & Ala’a, H. (2016). Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. International journal of biological macromolecules, 87, 366-374.

Sharma, G., & Katwal, R. (2016). Fabrication, characterization and cytotoxicity of guar gum/copper oxide nanocomposite: Efficient removal of organic pollutant. In Materials Science Forum (Vol. 842, pp. 88-102). Trans Tech Publications.

Sahoo, J. K., Kumar, A., Rath, J., Mohanty, T., Dash, P., & Sahoo, H. (2017). Guar gum-coated iron oxide nanocomposite as an efficient adsorbent for Congo red dye. DESALINATION AND WATER TREATMENT, 95, 342-354

Pourjavadi, A., Hosseini, S. H., Seidi, F., & Soleyman, R. (2013). Magnetic removal of crystal violet from aqueous solutions using polysaccharide‐based magnetic nanocomposite hydrogels. Polymer International, 62(7), 1038-1044.

Rao, K. M., Kumar, A., & Han, S. S. (2018). Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. Journal of Materials Science & Technology, 34(8), 1371-1377.

Maciel, D. J., de Mello Ferreira, I. L., da Costa, G. M., & da Silva, M. R. (2016). Nanocomposite hydrogels based on iota-carrageenan and maghemite: Morphological, thermal and magnetic properties. European Polymer Journal, 76, 147-155.

Raman, M., Devi, V., & Doble, M. (2015). Biocompatible ι-carrageenan-γ-maghemite nanocomposite for biomedical applications–synthesis, characterization and in vitro anticancer efficacy. Journal of nanobiotechnology, 13(1), 18.

Finetti, F., Terzuoli, E., Donnini, S., Uva, M., Ziche, M., & Morbidelli, L. (2016). Monitoring endothelial and tissue responses to cobalt ferrite nanoparticles and hybrid hydrogels. PloS one, 11(12), e0168727.

Bisht, G., & Neupane, S. (2018). Arsenic removal through supercritical carbon dioxide-assisted modified magnetic starch (starch–Fe 3 O 4) nanoparticles. Nanotechnology for Environmental Engineering, 3(1), 8.

Hernández, R., Zamora-Mora, V., Sibaja-Ballestero, M., Vega-Baudrit, J., López, D., & Mijangos, C. (2009). Influence of iron oxide nanoparticles on the rheological properties of hybrid chitosan ferrogels. Journal of colloid and interface science, 339(1), 53-59.

Rao, K. M., Kumar, A., & Han, S. S. (2017). Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. International journal of biological macromolecules, 101, 165-171.

Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate polymers, 109, 171-179.

Azizi, S., Ahmad, M. B., Ibrahim, N. A., Hussein, M. Z., & Namvar, F. (2014). Preparation and properties of poly (vinyl alcohol)/chitosan blend bio-nanocomposites reinforced by cellulose nanocrystals. Chinese Journal of Polymer Science, 32(12), 1620-1627

Kumar, A., Rao, K. M., & Han, S. S. (2017). Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polymer Testing, 63, 214-225

Pati, Manoj Kumar, Puspalata Pattojoshi, and Gouri Sankar Roy. "Synthesis of graphene-based nanocomposite and investigations of its thermal and electrical properties." Journal of Nanotechnology 2016 (2016).

Bibi, S., Yasin, T., Hassan, S., Riaz, M., & Nawaz, M. (2015). Chitosan/CNTs green nanocomposite membrane: Synthesis, swelling and polyaromatic hydrocarbons removal. Materials Science and Engineering: C, 46, 359-365.

Hosseinzadeh, H. (2015). Synthesis of carrageenan/multi-walled carbon nanotube hybrid hydrogel nanocomposite for adsorption of crystal violet from aqueous solution. Polish Journal of Chemical Technology, 17(2), 70-76.

Fryczkowska, B., & Wiechniak, K. (2017). Preparation and properties of cellulose membranes with graphene oxide addition. Polish Journal of Chemical Technology, 19(4), 41-49.

Chen, X., Zhou, S., Zhang, L., You, T., & Xu, F. (2016). Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials, 9(7), 582.

El Rouby, W. M., Farghali, A. A., Sadek, M. A., & Khalil, W. F. (2018). Fast Removal of Sr (II) From Water by Graphene Oxide and Chitosan Modified Graphene Oxide. Journal of Inorganic and Organometallic Polymers and Materials, 1-14.

Bin‐Dahman, O. A., Rahaman, M., Khastgir, D., & Al‐Harthi, M. A. (2018). Electrical and dielectric properties of poly (vinyl alcohol)/starch/graphene nanocomposites. The Canadian Journal of Chemical Engineering, 96(4), 903-911.

Islam, M. S., Rahaman, M. S., & Yeum, J. H. (2015). Electrospun novel super-absorbent based on polysaccharide–polyvinyl alcohol–montmorillonite clay nanocomposites. Carbohydrate polymers, 115, 69-77.

Zhen, W., & Zheng, Y. (2016). Synthesis, characterization, and thermal stability of poly (lactic acid)/zinc oxide pillared organic saponite nanocomposites via ring‐opening polymerization of d, l‐lactide. Polymers for Advanced Technologies, 27(5), 606-614.

Bhuyan, B., Srivastava, S. K., & Mittal, V. (2018). Ethylene-co-Vinyl Acetate/MWCNTs/Hectorite Elastomeric Nanocomposites: Characterization and Electrical Properties. Journal of nanoscience and nanotechnology, 18(6), 4057-4064.

Ozkose, U. U., Altinkok, C., Yilmaz, O., Alpturk, O., & Tasdelen, M. A. (2017). In-situ preparation of poly (2-ethyl-2-oxazoline)/clay nanocomposites via living cationic ring-opening polymerization. European Polymer Journal, 88, 586-593.

Etika, K. C., Liu, L., Cox, M. A., & Grunlan, J. C. (2016). Clay-mediated carbon nanotube dispersion in poly (N-Isopropylacrylamide). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 19-26.

Weng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials & Design, 102, 276-283.

Ashamol, A., Priyambika, V. S., Avadhani, G. S., & Sailaja, R. R. N. (2013). Nanocomposites of crosslinked starch phthalate and silane modified nanoclay: Study of mechanical, thermal, morphological, and biodegradable characteristics. Starch‐Stärke, 65(5‐6), 443-452.

Zhang, S., Guan, Y., Fu, G. Q., Chen, B. Y., Peng, F., Yao, C. L., & Sun, R. C. (2014). Organic/inorganic superabsorbent hydrogels based on xylan and montmorillonite. Journal of Nanomaterials, 2014, 2.

Menon, S., Deepthi, M. V., Sailaja, R. R. N., & Ananthapadmanabha, G. S. (2014). Study on microwave assisted synthesis of biodegradable guar gum grafted acrylic acid superabsorbent nanocomposites. Indian Journal of Advances in Chemical Science, 2(2), 76-83.

Dziadkowiec, J. (2016). Guar Gum/Montmorillonite Nanocomposites and Their Potential Application in Drug Delivery (Doctoral dissertation, Université d'Ottawa/University of Ottawa).

Shruthi, S. B., Bhat, C., Bhaskar, S. P., Preethi, G., & Sailaja, R. R. N. (2016). Microwave assisted synthesis of guar gum grafted acrylic acid/nanoclay superabsorbent composites and its use in crystal violet dye absorption. Green and Sustainable Chemistry, 6(01), 11.

Wang, W., & Wang, A. (2009). Synthesis and swelling properties of guar gum-g-poly (sodium acrylate)/Na-montmorillonite superabsorbent nanocomposite. Journal of composite materials, 43(23), 2805-2819.

Melo, C. D., Garcia, P. S., Grossmann, M. V. E., Yamashita, F., Dall'Antônia, L. H., & Mali, S. (2011). Properties of extruded xanthan-starch-clay nanocomposite films. Brazilian Archives of Biology and Technology, 54(6), 1223-1333.

Singh, B., Varshney, L., & Francis, S. (2017). Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application. Radiation Physics and Chemistry, 135, 94-105.

Rinehart, S. J., Campbell, T., Burke, K. J., Garcia, B., Mlynarski, A., Brain, S. J., & Keleher, J. J. (2016). Synthesis and characterization of a chitosan/PVA antimicrobial hydrogel nanocomposite for responsive wound management materials. J Microb Biochem Technol, 8, 065-070.

Kodoth, A. K., Ghate, V. M., Lewis, S. A., & Badalamoole, V. (2018). Application of pectin zinc oxide hybrid nanocomposite in the delivery of a hydrophilic drug and a study of its isotherm, kinetics and release mechanism. International journal of biological macromolecules, 115, 418-430.

Zare-Akbari, Z., Farhadnejad, H., Furughi-Nia, B., Abedin, S., Yadollahi, M., & Khorsand-Ghayeni, M. (2016). PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. International journal of biological macromolecules, 93, 1317-1327.

Sadequi. Mohammad., Shafiei, F., Mohammadinasab, E., Sadeghi, H., & Shasavari, H. (2014). Biosuperabsorbent Hydrogel Based on Alginate-g-PolyAA/kaolin Composite for Releasing Cefalexin Drug. Oriental Journal of Chemistry, 30(1), 285-290.

Raghavendra, G. M., Jayaramudu, T., Varaprasad, K., Sadiku, R., Ray, S. S., & Raju, K. M. (2013). Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydrate polymers, 93(2), 553-560.

Jiao, X., Gutha, Y., & Zhang, W. (2017). Application of chitosan/poly (vinyl alcohol)/CuO (CS/PVA/CuO) beads as an adsorbent material for the removal of Pb (II) from aqueous environment. Colloids and Surfaces B: Biointerfaces, 149, 184-195

Zhou, Y., Fu, S., Zhang, L., Zhan, H., & Levit, M. V. (2014). Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II). Carbohydrate polymers, 101, 75-82.

Pour, Zahra Sekhavat, and Mousa Ghaemy. "Removal of dyes and heavy metal ions from water by magnetic hydrogel beads based on poly (vinyl alcohol)/carboxymethyl starch-g-poly (vinyl imidazole)." RSC Advances 5.79 (2015): 64106-64118.



  • There are currently no refbacks.