Open Access Open Access  Restricted Access Subscription or Fee Access

A Contemplating Review on Pure and Modified Polymeric Membranes for O2/N2 Separation

Shakir Ul Azam, Arshad Hussain, Sarah Farrukh, Witold Kwapinski, Muhammad Ayoub

Abstract


The separation of O2/N2 by using membrane technology from air got the interest of the process industries due to its advantage over the conventional technologies like cryogenic distillation and pressure swing adsorption, in terms of simplicity, size, economic and power consumption. Membrane material selection for the separation of O2/N2 is challenging because most of the materials have low selectivityand others have low permeability. To meet both the selectivity of O2/N2 and permeability of O2for commercial use, different modifications have been done, like physical, chemical and surface modification by using methods like blending, cross-linking, morphology changing (asymmetric membranes), surface coating, and by incorporating additives which provide synergistic properties to the membrane performance. This review will discuss pure polymeric membranes, polymer blends, polymer crosslinking, asymmetric membranes, composite membranes and mixed matrix membranes for the separation of O2/N2 and ended up by giving future direction to achieve commercial-grade membranes for O2/N2 separation.

Keywords:O2/N2 separation, membrane performance, membrane modules, membrane modification, mixed matrix membranes.


Keywords


O2/N2 separation, membrane performance, membrane modules, membrane modification, mixed matrix membranes.

Full Text:

PDF

References


Stafford, T.M., Indoor air quality and academic performance. J. Environ. Econ. Manag, 2015. 70: p. 34-50.

Fan, Y. and P. Si, The Study of Numerical Simulation of Oxygen-enriched Burner System. CFD Letters, 2011. 2(4): p. 197-207.

Chong, K., S. Lai, H. Thiam, et al., Recent progress of oxygen/nitrogen separation using membrane technology. J. Eng. Sci. Technol, 2016. 11: p. 1016-1030.

Reynolds, T.L. Gas Separation Technology: State of the Art. in A paper presented to the Halon Options Technical Working Conference, April. 2001.

Baker, R.W., E. Cussler, W. Eykamp, et al., Membrane separation system: Recent developments and future directions. Noyes Data Corporation, Park Ridge, NJ. 1991. 451, 1991.

Naito, N., K. Cook, Y. Toyoda, et al., Artificial Lungs for Lung Failure: JACC Technology Corner. J. Am. Coll. Cardiol., 2018. 72(14): p. 1640-1652.

Reed, L., Hollow Fiber Membranes for Artificial Lung Applications. 2016.

Baker, R.W. and U.b. Staff, Membrane technology.Kirk‐Othmer Encyclopedia of Chemical Technology, 2000.

Smith, A. and J. Klosek, A review of air separation technologies and their integration with energy conversion processes. Fuel Process. Technol., 2001. 70(2): p. 115-134.

Peng, N., N. Widjojo, P. Sukitpaneenit, et al., Evolution of polymeric hollow fibers as sustainable technologies: past, present, and future. Prog. Polym. Sci., 2012. 37(10): p. 1401-1424.

Ghosal, K. and B.D. Freeman, Gas separation using polymer membranes: an overview. Polym. Adv. Technol., 1994. 5(11): p. 673-697.

Matson, S., W. Ward, S. Kimura, et al., Membrane oxygen enrichment: II. Economic assessment. J. Membr. Sci, 1986. 29(1): p. 79-96.

Baker, R.W. and B.T. Low, Gas separation membrane materials: a perspective. Macromolecules, 2014. 47(20): p. 6999-7013.

Kanehashi, S., S. Sato, K. Nagai, et al., Membrane gas separation. 2010.

Baker, R.W., Future directions of membrane gas separation technology. ‎Ind. Eng. Chem. Res, 2002. 41(6): p. 1393-1411.

Wang, L., J. Chen, Y. Hung, et al., ’Membrane and Desalination Technologies, Springer Science Business Media. LLC, London, 2011.

Mulder, J., Basic principles of membrane technology. 2012: Springer Science & Business Media.

Illing, G., Development and characterisation of polyaniline-based composite membranes for gas-separation. 2002, © Gerhard Illing.

Javaid, A., Membranes for solubility-based gas separation applications. Chem. Eng. J., 2005. 112(1-3): p. 219-226.

Koros, W.J. and G. Fleming, Membrane-based gas separation. J. Membr. Sci, 1993. 83(1): p. 1-80.

Fain, D., Membrane gas separation principles.MRS Bull., 1994. 19(4): p. 40-43.

Sotirchos, S.V. and V.N. Burganos, Transport of gases in porous membranes. MRS Bull., 1999. 24(3): p. 41-45.

Maier, G., Gas separation with polymer membranes. Angew. Chem. Int. Ed., 1998. 37(21): p. 2960-2974.

Lonsdale, H., The growth of membrane technology. J. Membr. Sci, 1982. 10(2-3): p. 81-181.

Loeb, S., Sea water demineralization by means of a semipermeable membrane. 1963: University of California, Department of Engineering.

Cadotte, J.E., Evolution of composite reverse osmosis membranes. Materials science of synthetic membranes, 1985: p. 273-294.

Rozelle, L.T., J. Cadotte, K. Cobian, et al., Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes, in Reverse osmosis and synthetic membranes. 1977, National Research Council of Canada Ottawa. p. 249-261.

Browall, W.R., Method for sealing breaches in multi-layer ultrathin membrane composites. 1976, Google Patents.

Robeson, L., B. Freeman, D. Paul, et al., An empirical correlation of gas permeability and permselectivity in polymers and its theoretical basis. J. Membr. Sci, 2009. 341(1-2): p. 178-185.

Ismail, A.F., N. Ridzuan, and S.A. Rahman, Latest development on the membrane formation for gas separation. Songklanakarin J. Sci. Technol, 2002. 24: p. 1025-1043.

Robeson, L.M., The upper bound revisited. J. Membr. Sci, 2008. 320(1-2): p. 390-400.

Murali, R.S., T. Sankarshana, and S. Sridhar, Air separation by polymer-based membrane technology. Sep. Purif. Rev., 2013. 42(2): p. 130-186.

Dong, G., H. Li, and V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation. J. Mater. Chem. A, 2013. 1(15): p. 4610-4630.

Hamid, M.R.A. and H.-K. Jeong, Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges. Korean J. Chem. Eng., 2018: p. 1-24.

Ahmed, I., Z.A.M. Yusof, and M. Beg, Fabrication of polymer based mix matrix membrane-A short review. Int. J. Basic Appl. Sci, 2010. 10(2): p. 14-19.

Chung, T.-S., L.Y. Jiang, Y. Li, et al., Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci., 2007. 32(4): p. 483-507.

Han, J., W. Lee, J.M. Choi, et al., Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: Precipitation kinetics, morphology and gas separation. J. Membr. Sci, 2010. 351(1-2): p. 141-148.

Kulkarni, S.S. and D.W. Kratzer, Separation membrane made from blends of polyimides with polyimidazoles. 2011, Google Patents.

Young, J.S., G.S. Long, and B.F. Espinoza, Cross-linked polybenzimidazole membrane for gas separation. 2006, Google Patents.

Sridhar, S., R. Suryamurali, B. Smitha, et al., Development of crosslinked poly (ether-block-amide) membrane for CO2/CH4 separation. Colloids Surf. A, 2007. 297(1-3): p. 267-274.

Himma, N.F., A.K. Wardani, N. Prasetya, et al., Recent progress and challenges in membrane-based O2/N2 separation. Rev. Chem. Eng., 2018.

Alqaheem, Y., A. Alomair, M. Vinoba, et al., Polymeric gas-separation membranes for petroleum refining. Int. J. Polym. Sci., 2017. 2017.

Himma, N.F., A.K. Wardani, and I.G. Wenten, Preparation of superhydrophobic polypropylene membrane using dip-coating method: the effects of solution and process parameters. Polymer Plast. Technol. Eng., 2017. 56(2): p. 184-194.

Robeson, L.M., Q. Liu, B.D. Freeman, et al., Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship. J. Membr. Sci, 2015. 476: p. 421-431.

Stern, S., V. Shah, and B. Hardy, Structure‐permeability relationships in silicone polymers. J. Polym. Sci. B, 1987. 25(6): p. 1263-1298.

Merkel, T., V. Bondar, K. Nagai, et al., Gas sorption, diffusion, and permeation in poly (dimethylsiloxane). J. Polym. Sci. B, 2000. 38(3): p. 415-434.

Reid, B.D., F.A. Ruiz-Trevino, I.H. Musselman, et al., Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41. Chem. Mater., 2001. 13(7): p. 2366-2373.

Koros, W., G. Fleming, S. Jordan, et al., Polymeric membrane materials for solution-diffusion based permeation separations. Prog. Polym. Sci., 1988. 13(4): p. 339-401.

Espeso, J., A.E. Lozano, G. José, et al., Effect of substituents on the permeation properties of polyamide membranes. J. Membr. Sci, 2006. 280(1-2): p. 659-665.

Budd, P.M. and N.B. McKeown, Highly permeable polymers for gas separation membranes. Polym. Chem., 2010. 1(1): p. 63-68.

McKeown, N.B., P.M. Budd, K.J. Msayib, et al., Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem.: Eur. J., 2005. 11(9): p. 2610-2620.

Du, N., G.P. Robertson, I. Pinnau, et al., Copolymers of Intrinsic Microporosity Based on 2, 2′, 3, 3′‐Tetrahydroxy‐1, 1′‐dinaphthyl. Macromol. Rapid Commun, 2009. 30(8): p. 584-588.

Carta, M., K.J. Msayib, P.M. Budd, et al., Novel spirobisindanes for use as precursors to polymers of intrinsic microporosity. Org. Lett., 2008. 10(13): p. 2641-2643.

Carta, M., K.J. Msayib, and N.B. McKeown, Novel polymers of intrinsic microporosity (PIMs) derived from 1, 1-spiro-bis (1, 2, 3, 4-tetrahydronaphthalene)-based monomers. Tetrahedron Lett., 2009. 50(43): p. 5954-5957.

Du, N., G.P. Robertson, J. Song, et al., Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation. Macromolecules, 2008. 41(24): p. 9656-9662.

Ghanem, B.S., N.B. McKeown, P.M. Budd, et al., Polymers of intrinsic microporosity derived from bis (phenazyl) monomers. Macromolecules, 2008. 41(5): p. 1640-1646.

Du, N., G.P. Robertson, I. Pinnau, et al., Polymers of intrinsic microporosity derived from novel disulfone-based monomers. Macromolecules, 2009. 42(16): p. 6023-6030.

Yampolskii, Y.P., Amorphous perfluorinated membrane materials: structure, properties and application. Russ. J. Gen. Chem., 2009. 79(3): p. 657-665.

Finkelshtein, E.S., M. Gringolts, N. Ushakov, et al., Synthesis and gas permeation properties of new ROMP polymers from silyl substituted norbornadienes and norbornenes. Polymer, 2003. 44(10): p. 2843-2851.

Srinivasan, R., S. Auvil, and P. Burban, Elucidating the mechanism (s) of gas transport in poly [1-(trimethylsilyl)-1-propyne](PTMSP) membranes. J. Membr. Sci, 1994. 86(1-2): p. 67-86.

Weddigen, G., Process for preparing polyacetylenes and substituted polyacetylenes produced thereby. 1984, Google Patents.

Cecopieri-Gómez, M.L., J. Palacios-Alquisira, and J. Dominguez, On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes. J. Membr. Sci, 2007. 293(1-2): p. 53-65.

Tanihara, N., S. Nakanishi, and T. Yoshinaga, Gas and Vapor Separation through Polyimide Membranes. J. JPN. PETROL. INST., 2016. 59(6): p. 276-282.

Tanaka, K., M. Okano, H. Toshino, et al., Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl‐substituted phenylenediamines. J. Polym. Sci. B, 1992. 30(8): p. 907-914.

Liu, Y., C. Pan, M. Ding, et al., Gas permeability and permselectivity of polyimides prepared from phenylenediamines with methyl substitution at the ortho position. Polym. Int., 1999. 48(9): p. 832-836.

Kim, S. and Y.M. Lee, Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci., 2015. 43: p. 1-32.

Li, S., H.J. Jo, S.H. Han, et al., Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation. J. Membr. Sci, 2013. 434: p. 137-147.

Lee, Y.M., K.-Y. Kim, C.-h. Jung, et al., Preparation method of polybenzoxazoles by thermal rearrangement, polybenzoxazoles prepared thereby, and gas separation membrane comprising the same. 2013, Google Patents.

Ismail, A. and P. Lai, Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Sep. purif. technol., 2003. 33(2): p. 127-143.

Wang, M., X. Zhu, and L. Zhang, Hole structure and its formation in thin films of hydrolyzed poly (styrene maleic anhydride) alternating copolymers. J. Appl. Polym. Sci., 2000. 75(2): p. 267-274.

Chung, T.-S., E.R. Kafchinski, and P. Foley, Development of asymmetric hollow fibers from polyimides for air separation. J. Membr. Sci, 1992. 75(1-2): p. 181-195.

Chung, T.S., S.K. Teoh, and X. Hu, Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes. J. Membr. Sci, 1997. 133(2): p. 161-175.

Peng, N., T.-S. Chung, and K.Y. Li, The role of additives on dope rheology and membrane formation of defect-free Torlon® hollow fibers for gas separation. J. Membr. Sci, 2009. 343(1-2): p. 62-72.

Yamasaki, A., R. Tyagi, A. Fouda, et al., Effect of solvent evaporation conditions on gas separation performance for asymmetric polysulfone membranes. J. Appl. Polym. Sci., 1999. 71(9): p. 1367-1374.

Pinnau, I. and W.J. Koros, Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. J. Appl. Polym. Sci., 1991. 43(8): p. 1491-1502.

Pinnau, I. and W.J. Koros, Relationship between substructure resistance and gas separation properties of defect-free integrally skinned asymmetric membranes. ‎Ind. Eng. Chem. Res, 1991. 30(8): p. 1837-1840.

Ismail, A., I. Dunkin, S. Gallivan, et al., Production of super selective polysulfone hollow fiber membranes for gas separation. Polymer, 1999. 40(23): p. 6499-6506.

Wang, D., W. Teo, and K. Li, Preparation and characterization of high-flux polysulfone hollow fibre gas separation membranes. J. Membr. Sci, 2002. 204(1-2): p. 247-256.

Niwa, M., H. Kawakami, S. Nagaoka, et al., Fabrication of an asymmetric polyimide hollow fiber with a defect-free surface skin layer. J. Membr. Sci, 2000. 171(2): p. 253-261.

Hasbullah, H., S. Kumbharkar, A. Ismail, et al., Asymmetric hollow fibre membranes based on ring-substituted polyaniline and investigation towards its gas transport properties. J. Membr. Sci, 2012. 397: p. 38-50.

Niwa, M., H. Kawakami, T. Kanamori, et al., Gas separation of asymmetric 6FDA polyimide membrane with oriented surface skin layer. Macromolecules, 2001. 34(26): p. 9039-9044.

Lee, W.-J., D.-S. Kim, and J.-H. Kim, Preparation and gas separation properties of asymmetric polysulfone membranes by a dual bath method. Korean J. Chem. Eng., 2000. 17(2): p. 143-148.

Mohamed, F., H. Hasbullah, W. Jamian, et al., Gas Permeation Performance of Poly (lactic acid) Asymmetric Membrane for O 2/N 2 Separation, in ICGSCE 2014. 2015, Springer. p. 149-156.

Bos, A., I. Pünt, H. Strathmann, et al., Suppression of gas separation membrane plasticization by homogeneous polymer blending. AIChE Journal, 2001. 47(5): p. 1088-1093.

Aryanti1a, P., R. Yustiana1b, R. Purnama, et al., Performance and characterization of PEG400 modified PVC ultrafiltration membrane. 2015.

Rezakazemi, M., M. Sadrzadeh, and T. Matsuura, Thermally stable polymers for advanced high-performance gas separation membranes. ‎Prog. Energy Combust. Sci., 2018. 66: p. 1-41.

Li, X.-G., I. Kresse, J. Springer, et al., Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Polymer, 2001. 42(16): p. 6859-6869.

Komatsuka, T., A. Kusakabe, and K. Nagai, Characterization and gas transport properties of poly (lactic acid) blend membranes. Desalination, 2008. 234(1-3): p. 212-220.

Kim, S.H., D. Kim, and D.S. Lee, Gas permeation behavior of PS/PPO blends. J. Membr. Sci, 1997. 127(1): p. 9-15.

Ghalei, B. and M.A. Semsarzadeh. A novel nano structured blend membrane for gas separation. in Macromolecular Symposia. 2007. Wiley Online Library.

Zimmerman, C.M. and W.J. Koros, Polypyrrolones for membrane gas separations. I. Structural comparison of gas transport and sorption properties. J. Polym. Sci. B, 1999. 37(12): p. 1235-1249.

George, S.C., K. Ninan, and S. Thomas, Permeation of nitrogen and oxygen gases through styrene–butadiene rubber, natural rubber and styrene–butadiene rubber/natural rubber blend membranes. Eur. Polym. J., 2001. 37(1): p. 183-191.

Hunger, K., N. Schmeling, H.B. Jeazet, et al., Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes, 2012. 2(4): p. 727-763.

Shao, L., L. Liu, S.-X. Cheng, et al., Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport. J. Membr. Sci, 2008. 312(1-2): p. 174-185.

Hsu, K., S. Nataraj, R. Thorogood, et al., O2/N2 Selectivity improvement for polytrimethylsilypropyne membranes by UV-irradiation and further enhancement by subambient temperature operation. J. Membr. Sci, 1993. 79(1): p. 1-10.

Liu, C., S.T. Wilson, and D.A. Lesch, UV-cross-linked membranes from polymers of intrinsic microporosity for liquid separations. 2010, Google Patents.

Meier, I.K., M. Langsam, and H.C. Klotz, Selectivity enhancement via photooxidative surface modification of polyimide air separation membranes. J. Membr. Sci, 1994. 94(1): p. 195-212.

Puertas-Bartolomé, M., M.E. Dose, P. Bosch, et al., Aromatic poly (ether ether ketone) s capable of crosslinking via UV irradiation to improve gas separation performance. RSC Advances, 2017. 7(87): p. 55371-55381.

Li, F.Y., Y. Xiao, T.-S. Chung, et al., High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules, 2012. 45(3): p. 1427-1437.

Baker, R.W., Membrane technology and applications. 2012: John Wiley & Sons.

Chung, T.-S., E.R. Kafchinski, and R. Vora, Development of a defect-free 6FDA-durene asymmetric hollow fiber and its composite hollow fibers. J. Membr. Sci, 1994. 88(1): p. 21-36.

Gupta, Y., K. Hellgardt, and R. Wakeman, Enhanced permeability of polyaniline based nano-membranes for gas separation. J. Membr. Sci, 2006. 282(1-2): p. 60-70.

Pinnau, I., Z. He, and R. Blanc, Gas separation using coated membranes. 2004, Google Patents.

Chong, K.C., S.O. Lai, W.J. Lau, et al., Fabrication and characterization of polysulfone membranes coated with polydimethysiloxane for oxygen enrichment. Aerosol Air Qual. Res., 2017. 17(11): p. 2735-2742.

Chong, K., S. Lai, W. Lau, et al., Preparation, characterization, and performance evaluation of polysulfone hollow fiber membrane with PEBAX or PDMS coating for oxygen enhancement process. Polymers, 2018. 10(2): p. 126.

Roslan, R.A., W.J. Lau, D.B. Sakthivel, et al., Separation of CO2/CH4 and O2/N2 by polysulfone hollow fiber membranes: effects of membrane support properties and surface coating materials. J. Polym. Eng., 2018. 38(9): p. 871-880.

Son, W.-I., J.-M. Hong, and B.-S. Kim, Polypyrrole composite membrane with high permeability prepared by interfacial polymerization. Korean J. Chem. Eng., 2005. 22(2): p. 285-290.

Aroon, M., A. Ismail, T. Matsuura, et al., Performance studies of mixed matrix membranes for gas separation: a review. Sep. purif. technol., 2010. 75(3): p. 229-242.

Xu, Z.-l., L.-y. Yu, and L.-f. Han, Polymer-nanoinorganic particles composite membranes: a brief overview. Front. Chem. Eng., 2009. 3(3): p. 318-329.

Moore, T.T. and W.J. Koros, Gas sorption in polymers, molecular sieves, and mixed matrix membranes. J. Appl. Polym. Sci., 2007. 104(6): p. 4053-4059.

Mahajan, R., R. Burns, M. Schaeffer, et al., Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J. Appl. Polym. Sci., 2002. 86(4): p. 881-890.

Patel, R., J.T. Park, H.P. Hong, et al., Use of block copolymer as compatibilizer in polyimide/zeolite composite membranes. Polym. Adv. Technol., 2011. 22(5): p. 768-772.

Yong, H.H., H.C. Park, Y.S. Kang, et al., Zeolite-filled polyimide membrane containing 2, 4, 6-triaminopyrimidine. J. Membr. Sci, 2001. 188(2): p. 151-163.

Vu, D.Q., W.J. Koros, and S.J. Miller, Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Membr. Sci, 2003. 211(2): p. 311-334.

Chen, J.-T., C.-C. Shih, Y.-J. Fu, et al., Zeolite-filled porous mixed matrix membranes for air separation. ‎Ind. Eng. Chem. Res, 2014. 53(7): p. 2781-2789.

Goh, P., B. Ng, A. Ismail, et al., Effect of dispersed multi-walled carbon nanotubes on mixed matrix membrane for O2/N2 separation. Sep. Sci. Technol., 2011. 46(8): p. 1250-1261.

Goh, P., A. Ismail, S. Sanip, et al., Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. purif. technol., 2011. 81(3): p. 243-264.

Ismail, A., W. Rahman, and F. Aziz. Development of Polysulfone (PSF)‐Carbon Molecular Sieve (CMS) Mixed Matrix Membrane (MMM) For O 2/N 2 Gas Separation.in AIP Conference Proceedings. 2009. AIP.

Hu, C.-C., T.-C. Liu, K.-R. Lee, et al., Zeolite-filled PMMA composite membranes: influence of coupling agent addition on gas separation properties. Desalination, 2006. 193(1-3): p. 14-24.

Li, Y., T.-S. Chung, C. Cao, et al., The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J. Membr. Sci, 2005. 260(1-2): p. 45-55.

Fernández-Barquín, A., C. Casado-Coterillo, S. Valencia, et al., Mixed matrix membranes for O2/N2 separation: The influence of temperature. Membranes, 2016. 6(2): p. 28.

Adams, R., C. Carson, J. Ward, et al., Metal organic framework mixed matrix membranes for gas separations. Micropor Mesopor Mat., 2010. 131(1-3): p. 13-20.

Perez, E.V., K.J. Balkus Jr, J.P. Ferraris, et al., Mixed-matrix membranes containing MOF-5 for gas separations. J. Membr. Sci, 2009. 328(1-2): p. 165-173.

Zornoza, B., B. Seoane, J.M. Zamaro, et al., Combination of MOFs and zeolites for mixed‐matrix membranes. ChemPhysChem, 2011. 12(15): p. 2781-2785.

Bushell, A.F., M.P. Attfield, C.R. Mason, et al., Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci, 2013. 427: p. 48-62.

Duan, C., X. Jie, D. Liu, et al., Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks. J. Membr. Sci, 2014. 466: p. 92-102.

Zhang, Y., I.H. Musselman, J.P. Ferraris, et al., Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS. J. Membr. Sci, 2008. 313(1-2): p. 170-181.

Jeazet, H.B.T., C. Staudt, and C. Janiak, A method for increasing permeability in O 2/N 2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone. ChemComm, 2012. 48(15): p. 2140-2142.

Ismail, A., P. Goh, S. Sanip, et al., Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep. purif. technol., 2009. 70(1): p. 12-26.

Kim, S., T.W. Pechar, and E. Marand, Poly (imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination, 2006. 192(1-3): p. 330-339.

Murali, R.S., S. Sridhar, T. Sankarshana, et al., Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. ‎Ind. Eng. Chem. Res, 2010. 49(14): p. 6530-6538.

Kim, S., L. Chen, J.K. Johnson, et al., Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J. Membr. Sci, 2007. 294(1-2): p. 147-158.

Pinnau, I. and Z. He, Filled superglassy membrane. 2001, Google Patents.

Ahn, J., W.-J. Chung, I. Pinnau, et al., Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci, 2008. 314(1-2): p. 123-133.

Sadeghi, M., M.A. Semsarzadeh, M. Barikani, et al., Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J. Membr. Sci, 2011. 376(1-2): p. 188-195.

Najafi, M., M. Sadeghi, A. Bolverdi, et al., Gas permeation properties of cellulose acetate/silica nanocomposite membrane. Adv. Polym. Tech., 2018. 37(6): p. 2043-2052.

Moaddeb, M. and W.J. Koros, Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J. Membr. Sci, 1997. 125(1): p. 143-163.

Lau, C.H., P.T. Nguyen, M.R. Hill, et al., Ending aging in super glassy polymer membranes. Angew. Chem. Int. Ed., 2014. 53(21): p. 5322-5326.


Refbacks

  • There are currently no refbacks.