Open Access Open Access  Restricted Access Subscription or Fee Access

3D Printable Polymer Nanocomposites: Challenges, Availability and Future

Sumit Singh, Rajesh Kumar Attri, Shefali Trivedi

Abstract


Three-dimensional (3D) printing technology is evolving rapidly, with various materials used during the process. One of the most recent advancements in this area is the use of polymer nanocomposites for fused deposition modelling (FDM) printing. Polymer nanocomposites have a great potential due to their unique properties such as high strength, stiffness, excellent thermal and electrical properties as well as superior surface finish. But there are also some challenges associated with FDM printing these materials, including difficulty in controlling print parameters to obtain desired results and limited availability of ready-to-use products. This paper aims to provide an overview on existing challenges related to FDM printable polymer nanocomposite materials along with current availability of these materials in the market and future prospects regarding their application. The study looks at various aspects such as different types of polymer nanocomposites that can be printed using FDM technology, methods for selecting suitable and strategies adopted by different researchers for increasing product availability. In conclusion it will be proposed how further research could help improve the process of using FDM printable polymer nanocomposites efficiently and effectively in industrial applications.

Full Text:

PDF

References


Sharma A, Chhabra D, Sahdev R, Kaushik A, Punia U. Investigation of wear rate of FDM printed TPU, ASA and multi-material parts using heuristic GANN tool. Mater Today Proc. 2022; 63: 559–565.

Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng. 2018; 143: 172– 196. doi:10.1016/j.compositesb.2018.02.012.

Gebhardt A. Understanding Additive Manufacturing: Rapid Prototyping – Rapid Tooling – Rapid Manuacturing. Liberty Township, OH: Hanser; 2012.

Srivastava M, Rathee S. Optimisation of FDM process parameters by Taguchi method for imparting

customised properties to components. Virtual Phys Prototyp. 2018; 13 (3): 203–210. doi: 10.1080/17452759.2018.1440722.

Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 2019; 35: 1286–1296. doi: 10.1016/j.promfg.

06.089.

Keles O, Blevins CW, Bowman KJ. Effect of build orientation on the mechanical reliability of 3D printed ABS. Rapid Prototyp J. 2017; 23 (2): 320–328. doi: 10.1108/RPJ-09-2015-0122.

Yadav D, Chhabra D, Kumar Garg R, Ahlawat A, Phogat A. Optimization of FDM 3D printing process parameters for multi-material using artificial neural network. Mater Today Proc. 2020; 21: 1583–1591. doi: 10.1016/j.matpr.2019.11.225.

Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, et al. The status, challenges, and future of additive manufacturing in engineering. CAD Comput Aided Des. 2015; 69: 65–89. doi: 10.1016/j.cad.2015.04.001.

Kaushik A, Punia U, Garg RK, Yadav M, Vashistha R, Rathee M, Sahdev RK, Chhabra D. Optimization of process parameters for scanning human face using hand-held scanner. Research Square Preprint. 2022; September: 1–23. doi: 10.21203/rs.3.rs-2051093/v1.

Yadav D, Garg RK, Ahlawat A, Chhabra D. 3D printable biomaterials for orthopedic implants: solution for sustainable and circular economy. Resour Policy. 2020; 68 (February): 101767. doi: 10.1016/j.resourpol.2020.101767.

Deshwal S, Kumar A, Chhabra D. Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement. CIRP J Manuf Sci Technol. 2020; 31: 189–199. doi: 10.1016/j.cirpj.2020.05.009.

Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng. 2017; 110: 442–458. doi: 10.1016/j.compositesb.2016.11.034.

Nath SD, Nilufar S. An overview of additive manufacturing of polymers and associated composites. Polymers (Basel). 2020; 12 (11): 1–33.

Borrello J, Nasser P, Iatridis JC, Costa KD. 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer. Addit Manuf. 2018; 23 (February): 374–380. doi: 10.1016/j.addma.2018.08.019.

Taylor P, Hull C. On stereolithography. Virtual Phys Prototyp. 2012; (December On Stereolithography." Virtual and Physical Prototyping, 2012, 7(3), p. 177).

Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol. 2016; 83: 389–405.

Pilipović A, Raos P, Šercer M. Experimental testing of quality of polymer parts produced by laminated object manufacturing – LOM. Tehnicki Vjesnik – Technical Gazette. 2011; 18 (2): 253–

Dermeik B, Travitzky N. Laminated object manufacturing of ceramic-based materials. Adv Eng Mater. 2020; 22 (9): 2000256.

Parandoush P, Lin D. A review on additive manufacturing of polymer-fiber composites. Compos Struct. 2017; 182: 36–53. doi: 10.1016/j.compstruct.2017.08.088.

Rasiya G, Shukla A, Saran K. Additive manufacturing – a review. Mater Today Proc. 2021; 47 (Part 19): 6896–6901. doi.org/10.1016/j.matpr.2021.05.181.

Wong K V, Hernandez A. A review of additive manufacturing. Int Scholar Res Notices. 2012; 2012: Article 208760.

Rebaioli L. A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes. Int J Adv Manuf Technol. 2017; 93: 2571–2598.

Vayre B. Metallic additive manufacturing : state-of-the-art review. Mech Industry. 2012; 13 (2): 89–96.

Prakash KS, Nancharaih T, Rao VVS. Additive manufacturing techniques in manufacturing – an overview. Mater Today Proc. 2018; 5 (2): 3873–3882. doi: 10.1016/j.matpr.2017.11.642.

Salmoria G V, Leite JL, Vieira LF, Pires ATN, Roesler CRM. Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering. Polym Test. 2012; 31 (3): 411–416. doi:

1016/j.polymertesting.2011.12.006.

Yan C, Hao L, Xu L, Shi Y. Preparation, characterisation and processing of carbon fibre/polyamide-12 composites for selective laser sintering. Compos Sci Technol. 2011; 71 (16): 1834–1841. doi:

1016/j.compscitech.2011.08.013.

Chong L, Ramakrishna S, Singh S. A review of digital manufacturing-based hybrid additive manufacturing processes. Int J Adv Manuf Technol. 2018; 95: 2281–2300.

Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Red. 2016; 46: 151–186.

Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy : a review. Mater Des. 2019; 164: 107552. doi: 10.1016/j.matdes.2018.107552.

Dang H, Pramanik A, Basak AK, Dong Y, Prakash C, Debnath S, et al. A critical review on additive manufacturing of Ti-6Al-4V alloy : microstructure and mechanical properties. J Mater Res Technol.

; 18: 4641–4661. doi: 10.1016/j.jmrt.2022.04.055.

Dzogbewu TC. Additive manufacturing of Ti-based intermetallic alloys : a review and conceptualization of a next-generation machine. Materials. 2021; 14 (15): 4317.

Serin G, Kahya M, Unver HO, Gulec Y, Erogul O. Durlu N. A review of additive manufacturing technologies. In: 17th International Conference on Machine Design and Production, Bursa, Turkiye,

July 12–15, 2016.

Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym Test. 2018; 69: 157–166. doi:

1016/j.polymertesting.2018.05.020.

Vicente CMS, Martins TS, Leite M, Ribeiro A, Reis L. Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polym Adv Technol. 2020; 31 (3): 501–507.

Solomon IJ, Sevvel P, Gunasekaran J. A review on the various processing parameters in FDM. Mater Today Proc. 2020; 37 (Part 2): 509–514. doi: 10.1016/j.matpr.2020.05.484.

Nyiranzeyimana G, Mutua JM, Mose BR, Mbuya TO. Optimization of process parameters in fused deposition modelling of thermoplastics: a review. Materwiss Werksttech. 2021; 52 (6): 682–694.

Gülcan O, Günaydın K. The state of the art of material jetting – a critical review. Polymers. 2021;13 (16): 2829.

Sing SL, Yeong WY. Recent progress in research of additive manufacturing for polymers. Polymers. 2022; 14 (11): 2267.

Tyagi S, Yadav A, Deshmukh S. Review on mechanical characterization of 3D printed parts created using material jetting process. Mater Today Proc. 2022; 51 (Part 1): 1012–1016. doi:

1016/j.matpr.2021.07.073.

Ling Y, Wang C, Leong S, Dikshit V, Yee W, Wei J. Material jetting additive manufacturing: an experimental study using designed metrological benchmarks. Precis Eng. 2017; 50: 275–285. doi:

1016/j.precisioneng.2017.05.015.

Elkaseer A, Chen KJ, Janhsen JC, Refle O, Hagenmeyer V, Scholz SG. Material jetting for advanced applications: a state-of-the-art review, gaps and future directions. Addit Manuf. 2022; 60

(PA): 103270. doi: 10.1016/j.addma.2022.103270.

Bourell D, Kruth JP, Leu M, Levy G, Rosen D, Beese AM, et al. Materials for additive manufacturing. CIRP Ann – Manuf Technol. 2017; 66 (2): 659–681. doi:

1016/j.cirp.2017.05.009.

Niu X, Singh S, Garg A, Singh H, Panda B, Peng X, et al. Review of materials used in laser-aided additive manufacturing processes to produce metallic products. Front Mech Eng. 2019; 14 (3): 282–

Seifi M, Salem A, Beuth J, Harrysson O, Lewandowski JJ. Overview of materials qualification needs for metal additive manufacturing. JOM. 2016; 68 (3): 747–764.

Wang X, Gong X, Chou K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc Inst Mech Eng Part B J Eng Manuf. 2017; 231 (11): 1890–1903.

Yadav M. A review on piezoelectric energy harvesting systems based on different mechanical structures. Int J Enhanced Res Sci Technol Eng. 2020; 9 (1): 1–7.

Fahrenholtz WG, Hilmas GE. Ultra-high temperature ceramics: materials for extreme environments. Scripta Mater. 2017; 129: 94–99.

Bugeda G, Cervera M, Lombera G. Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyp J. 1999; 5 (1): 21–26.

Hull CW. Apparatus for Production of Three-Dimensonal Objects by Stereolithography. US Patent. 1986. Patent number , 575,330. Available at https://patentimages.storage.googleapis.com/

c/a0/27/e49642dab99cf6/US4575330.pdf

Martínez-Pellitero S, Castro MA, Fernández-Abia AI, González S, Cuesta E. Analysis of influence factors on part quality in micro-SLA technology. Procedia Manuf. 2017; 13: 856–863. doi:

1016/j.promfg.2017.09.143.

Punia U, Kaushik A, Garg RK, Chhabra D, Sharma A. 3D printable biomaterials for dental restoration: a systematic review. Mater Today Proc. 2022; 63: 566–572.

Yadav D, Chhabra D, Gupta RK, Phogat A, Ahlawat A. Modeling and analysis of significant process parameters of FDM 3D printer using ANFIS. Mater Today Proc. 2020; 21: 1592–1604. doi:

1016/j.matpr.2019.11.227.

Sandeep S, Chhabra D, Gupta RK. Optimization of FDM printing parameters for surface quality improvement of carbon based nylon (PA-CF) composite material fabricated parts using evolutionary algorithm. J Nano-Electron Phys. 2021; 13 (2): 02004-1–02004-5.

Samykano M, Selvamani SK, Kadirgama K, Ngui WK, Kanagaraj G, Sudhakar K. Mechanical property of FDM printed ABS: influence of printing parameters. Int J Adv Manuf Technol. 2019;

(9–12): 2779–2796.

Dermeik B, Travitzky N. Laminated object manufacturing of ceramic-based materials. Adv Eng Mater. 2020; 22 (9): 2000256.

Guo N, Leu MC. Additive manufacturing: technology, applications and research needs. Front Mech

Eng. 2013; 8 (3): 215–243.

Shulman H, Ross N. Additive manufacturing for cost efficient production of compact ceramic heat exchangers and recuperators. Technical Report. NETL Cross-Cutting Research Conference.

doi: 10.2172/1234436.

Kumar S, Choudhary AKS, Singh AK, Gupta AK. A Comparison of additive manufacturing technologies. Int J Innov Res Sci Technol. 2016; 3 (1): 147–152.

Vartanian K, McDonald T. Accelerating industrial adoption of metal additive manufacturing technology. JOM. 2016; 68 (3): 806–810.

Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD. Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B Eng. 2019; 174: 106956.

Shukla M, Todorov I, Kapletia D. Application of additive manufacturing for mass customisation: understanding the interaction of critical barriers. Prod Plan Control. 2018; 29 (10): 814–825. doi:

1080/09537287.2018.1474395.

Love LJ, Duty CE, Post BK, Lind RF, Lloyd PD, Kunc V, et al. Breaking Barriers in Polymer Additive Manufacturing (Conference). 2015. Available at https://www.osti.gov/biblio/1185467

Martinsuo M, Luomaranta T. Adopting additive manufacturing in SMEs: exploring the challenges and solutions. J Manuf Technol Manage. 2018; 29 (6): 937–957.

Naghshineh B, Carvalho H. The implications of additive manufacturing technology adoption for supply chain resilience: a systematic search and review. Int J Prod Econ. 2022; 247: 108387. doi: 10.1016/j.ijpe.2021.108387.

HUBS. Additive Manufacturing Trend Report 2021: 3D Printing Market Growth in the Year of the COVID-19. [Online]. Hubs.com. 2021. Available at https://f.hubs.com/06eab3c908a24d41b93

aa527c7d72287.pdf

Invernizzi M, Natale G, Levi M, Turri S, Griffini G. UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites. Materials (Basel). 2016; 9 (7): 583.

Punia U, Garg RK, Kaushik A, Sharma A. Investigation of the wear rate of materials under different design conditions. 2022; 9 (8): 1831–1837.

Yadav M, Kumar S, Kaushik A, Garg RK, Ahlawat A, Chhabra D. Modeling and simulation of piezo-beam structure mounted in a circular pipe using laminar flow as energy harvester. Int J Eng

Trends Technol. 2023; 71 (2): 296–314.

Azhari A, Toyserkani E, Villain C. Additive manufacturing of graphene-hydroxyapatite nanocomposite structures. Int J Appl Ceram Technol. 2015; 12 (1): 8–17.

Ning F, Cong W, Qiu J, Wei J, Wang S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng. 2015; 80: 369–

doi: 10.1016/j.compositesb.2015.06.013.

Zhang D, Chi B, Li B, Gao Z, Du Y, Guo J, et al. Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth Met. 2016; 217: 79–86. doi: 10.1016/j.synthmet.2016.03.014.

Daver F, Kajtaz M, Brandt M, Shanks RA. Creep and recovery behaviour of polyolefin-rubber nanocomposites developed for additive manufacturing. Polymers (Basel). 2016; 8 (12): 437.

Tewatia A, Hendrix J, Dong Z, Taghon M, Tse S, Chiu G, et al. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite. Mater Sci Eng B Solid-State Mater Adv

Technol. 2017; 216: 41–49. doi: 10.1016/j.mseb.2016.05.009.

Weng Z, Wang J, Senthil T, Wu L. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater Des. 2016; 102: 276–283. doi: 10.1016/j.matdes.2016.04.045.

Coppola B, Cappetti N, Di Maio L, Scarfato P, Incarnato L. Layered silicate reinforced polylactic acid filaments for 3D printing of polymer nanocomposites. In: 2017 IEEE 3rd International Forumon Research and Technology for Society and Industry (RTSI). , Modena, Italy, September 11–13, 2017. pp. 3–6.

Gnanasekaran K, Heijmans T, van Bennekom S, Woldhuis H, Wijnia S, de With G, et al. 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition

modeling. Appl Mater Today. 2017; 9: 21–28. doi: 10.1016/j.apmt.2017.04.003.

Özen A, Auhl D, Völlmecke C, Kiendl J, Abali BE. Optimization of manufacturing parameters and tensile specimen geometry for fused deposition modeling (FDM) 3D-printed PETG. Materials

(Basel). 2021; 14 (10): 2556.

Petrovskaya TS, Toropkov NE, Mironov EG, Azarmi F. 3D printed biocompatible polylactide-hydroxyapatite based material for bone implants. Mater Manuf Process. 2018; 33 (16): 1899–1904.doi: 10.1080/10426914.2018.1476764.

Tekinalp HL, Meng X, Lu Y, Kunc V, Love LJ, Peter WH, et al. High modulus biocomposites via additive manufacturing: cellulose nanofibril networks as “microsponges”. Compos Part B Eng.

; 173: 106817. doi: 10.1016/j.compositesb.2019.05.028.

Golbang A, Harkin-Jones E, Wegrzyn M, Campbell G, Archer E, McIlhagger A. Production and characterization of PEEK/IF-WS2 nanocomposites for additive manufacturing: simultaneous

improvement in processing characteristics and material properties. Addit Manuf. 2020; 31: 100920. doi: 10.1016/j.addma.2019.100920.

Sarwar Z, Yousef S, Tatariants M, Krugly E, Čiužas D, Danilovas PP, et al. Fibrous PEBA- graphene nanocomposite filaments and membranes fabricated by extrusion and additive manufacturing. Eur Polym J. 2019; 121: 109317. doi: 10.1016/j.eurpolymj.2019.109317.

Venkatesh C, Fuenmayor E, Doran P, Major I, Lyons JG, Devine DM. Additive manufacturing of PLA/HNT nanocomposites for biomedical applications. Procedia Manuf. 2019; 38 (2019): 17–24.

doi: 10.1016/j.promfg.2020.01.003.

Valentini F, Dorigato A, Rigotti D, Pegoretti A. Polyhydroxyalkanoates/fibrillated nanocellulose

composites for additive manufacturing. J Polym Environ. 2019; 27 (6): 1333–1341. doi: 10.1007/s10924-019-01429-8.

Yamamoto BE, Trimble AZ, Minei B, Ghasemi Nejhad MN. Development of multifunctional nanocomposites with 3-D printing additive manufacturing and low graphene loading. J Thermoplast

Compos Mater. 2019; 32 (3): 383–408.

Tambrallimath V, Keshavamurthy R, Koppad PG, Sethuram D. Mechanical characterization of PC-ABS reinforced with CNT nanocomposites developed by fused deposition modelling. J Phys ConfSer. 2020; 1455 (1): 012003.

Challagulla NV, Rohatgi V, Sharma D, Kumar R. Recent developments of nanomaterial applications in additive manufacturing: a brief review. Curr Opin Chem Eng. 2020; 28: 75–82. doi:

1016/j.coche.2020.03.003.

Wu H, Fahy WP, Kim S, Kim H, Zhao N, Pilato L, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater Sci. 2020; 111: 100638.

Arif MF, Alhashmi H, Varadarajan KM, Koo JH, Hart AJ, Kumar S. Multifunctional performance of carbon nanotubes and graphene nanoplatelets reinforced PEEK composites enabled via FFF additive manufacturing. Compos Part B Eng. 2020; 184: 107625. doi:

1016/j.compositesb.2019.107625.

Wang Y, Lei M, Wei Q, Wang Y, Zhang J, Guo Y, et al. 3D printing biocompatible l-Arg/GNPs/PLA nanocomposites with enhanced mechanical property and thermal stability. J Mater Sci. 2020; 55 (12): 5064–5078. doi: 10.1007/s10853-020-04353-8.

Wang L, Jiang S, Huang C, Dai P, Liu F, Qi X, et al. Properties of ABS/organic-attapulgite nanocomposites parts fabricated by fused deposition modeling. J Renew Mater. 2020; 8 (11): 1505–

Candal MV, Calafel I, Fernández M, Aranburu N, Aguirresarobe RH, Gerrica-Echevarria G, et al. Study of the interlayer adhesion and warping during material extrusion-based additive manufacturing of a carbon nanotube/biobased thermoplastic polyurethane nanocomposite. Polymer (Guildf). 2021; 224: 123734.

Mondal D, Srinivasan A, Comeau P, Toh YC, Willett TL. Acrylated epoxidized soybean oil/hydroxyapatite-based nanocomposite scaffolds prepared by additive manufacturing for bone tissue engineering. Mater Sci Eng C. 2021; 118: 111400. doi: 10.1016/j.msec.2020.111400.

Arigbabowo OK, Tate JS. Additive manufacturing of polyamide nanocomposites for electrostatic charge dissipation applications. Mater Sci Eng B Solid State Mater Adv Technol. 2021; 271

(May): 115251. doi: 10.1016/j.mseb.2021.115251.

Tambrallimath V, Keshavamurthy R, Bavan SD, Patil AY, Yunus Khan TM, Badruddin IA, et al. Mechanical properties of PC-ABS-based graphene-reinforced polymer nanocomposites

fabricated by FDM process. Polymers (Basel). 2021; 13 (17): 2951.

Karimipour-Fard P, Jeffrey MP, JonesTaggart H, Pop-Iliev R, Rizvi G. Development, processing and characterization of polycaprolactone/nano-hydroxyapatite/chitin-nano-whisker

nanocomposite filaments for additive manufacturing of bone tissue scaffolds. J Mech Behav Biomed Mater. 2021; 120 (March): 104583. doi: 10.1016/j.jmbbm.2021.104583.

Larraza I, Vadillo J, Calvo-Correas T, Tejado A, Olza S, Peña-Rodríguez C, et al. Cellulose and graphene based polyurethane nanocomposites for FDM 3D printing: filament properties and

printability. Polymers (Basel). 2021; 13 (5): 839.

Jiang Q, Zhang H, Rusakov D, Yousefi N, Bismarck A. Additive manufactured carbon nanotube/epoxy nanocomposites for heavy-duty applications. ACS Appl Polym Mater. 2021; 3(1): 93–97.

Sarabia-Vallejos MA, Rodríguez-Umanzor FE, González-Henríquez CM, Rodríguez-Hernández J. Innovation in additive manufacturing using polymers: a survey on the technological and

material developments. Polymers (Basel). 2022; 14 (7): 1351.

De Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC. High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym. 2016; 103:

–155. doi: 10.1016/j.reactfunctpolym.2016.04.010.

Zhu D, Ren Y, Liao G, Jiang S, Liu F, Guo J, et al. Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition

modeling. J Appl Polym Sci. 2017; 134 (39): 45332.

Kim H. Additive Manufacturing of Multi-functional Nanocomposites for Sensor and Energy Storage Devices. PhD Thesis. El Paso, TX, USA: University of Texas at El Paso; 2018. Available

at https://scholarworks.utep.edu/cgi/viewcontent.cgi article=2460&context=open_etd

Gonçalves J, Lima P, Krause B, Pötschke P, Lafont U, Gomes JR, et al. Electrically conductive polyetheretherketone nanocomposite filaments: from production to fused deposition modeling.

Polymers (Basel). 2018; 10 (8): 925.

Meiabadi S, Kazerooni A, Moradi M. A review on the implementation of polymer nanocomposites (PNC) in the fused deposition modelling (FDM) technology. In: 15th annual and

th International Conference on Manufacturing Engineering, Tehran, Iran, October 24–25, 2018.

Liu C, Ding J. Carbon nanotubes reinforced alumina matrix nanocomposites for conductive ceramics by additive manufacturing. Procedia Manuf. 2020; 48 (2019): 763–769. doi:

1016/j.promfg.2020.05.111.

Richardson MJ, Wu H, Wilcox TJ, Broaddus M, Lin PC, Krifa M, et al. Flame retardant nylon 6 nanocomposites for fused deposition modeling (FDM) applications. In: International SAMPE

Technical Conference, Seattle, WA, USA, May 2017. pp. 230–244.

Liu Y, Zhang W, Zhang F, Leng J, Pei S, Wang L, et al. Microstructural design for enhanced shape memory behavior of 4D printed composites based on carbon nanotube/polylactic acid

filament. Compos Sci Technol. 2019; 181 (January): 107692. doi:

1016/j.compscitech.2019.107692.

Li Y, Feng Z, Huang L, Essa K, Bilotti E, Zhang H, et al. Additive manufacturing high performance graphene-based composites: a review. Compos Part A Appl Sci Manuf. 2019; 124:105483. doi: 10.1016/j.compositesa.2019.105483.


Refbacks

  • There are currently no refbacks.