Open Access Open Access  Restricted Access Subscription or Fee Access

Green chemistry approach for synthesis of environmentally sustainable advanced polymeric nanoparticles

Mansi Tiwari, Susarla Venkata Ananta Rama Sastry*, Sandeep Kumar

Abstract


The distinctive properties of the Advanced Polymeric nanoparticles (PNPs) have gained substantial attention in several arenas. However, conventional nanoparticle synthesis methods often involve the use of hazardous solvents and energy-intensive processes, which can contribute to environmental concerns. To address these challenges, progressive techniques have emerged, aiming to prepare advanced polymeric nanoparticles in an environmentally sustainable manner for green chemistry applications. Each technique is analyzed in terms of its potential to minimize environmental impact, reduce waste generation, and enhance the sustainability of advanced polymeric nanoparticle synthesis. The article highlights the importance of adopting these progressive techniques to advance the field of green chemistry and promote the development of eco-friendly advanced polymeric nanoparticles for various green chemistry applications. Finally, it discusses the future prospects and challenges in implementing these techniques on an industrial scale, paving the way for more sustainable and eco-conscious practices in advanced nanoparticle synthesis.

Keywords


Advanced polymeric nanoparticles, environmentally sustainable, Green chemistry, Polymer

Full Text:

PDF

References


Christine V., Ponchel G. Polymer nanoparticles for nanomedicines. A guide for their design. Anticancer Res. 2017;37:1544. doi: 10.1007/978-3-319-41421-8

E. Kayalvizhi Nangai and S. Saravanan, “Synthesis, fabrication and testing of polymer nanocomposites: A review,” Mater Today Proc, vol. 81, pp. 91–97, 2023, doi: 10.1016/j.matpr.2021.02.261.

Grumezescu A.M. Design and Development of New Nanocarriers. William Andrew; Norwich, NY, USA: 2017. ISBN: 978-0-12-813627-0

Martinez Rivas C.J., Tarhini M., Badri W., Miladi K., Greige-Gerges H., Nazari Q.A., Galindo Rodriguez S.A., Roman R.A., Fessi H., Elaissari A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017; 532:66–81. doi: 10.1016/j.ijpharm.2017.08.064.

Chidambaram M., Krishnasamy K. Modifications to the conventional nanoprecipitation technique: An approach to fabricate narrow sized polymeric nanoparticles. Adv. Pharm. Bull. 2014; 4:205. doi: 10.5681/apb.2014.030

Lim K., Hamid Z.A.A. 10—Polymer nanoparticle carriers in drug delivery systems: Research trend. In: Inamuddin, Asiri A.M., Mohammad A., editors. Applications of Nanocomposite Materials in Drug Delivery. Woodhead Publishing; Cambridge, UK: 2018. pp. 217–237. doi: 10.1016/B978-0-12-813741-3.00010-8

Souto E.B., Souto S.B., Campos J.R., Severino P., Pashirova T.N., Zakharova L.Y., Silva A.M., Durazzo A., Lucarini M., Izzo A.A., et al. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules. 2019; 24:4209. doi: 10.3390/molecules24234209.

Vasile C. Polymeric Nanomaterials in Nanotherapeutics. Elsevier; London, UK: 2018. ISBN: 978-0-12-813932-5

Szczęch M., Szczepanowicz K. Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. Nanomaterials. 2020;10:496. doi: 10.3390/nano10030496.

Krishnamoorthy K., Mahalingam M. Selection of a suitable method for the preparation of polymeric nanoparticles: Multi-criteria decision making approach. Adv. Pharm. Bull. 2015;5:57. doi: 10.5681/apb.2015.008

Crucho C.I.C., Barros M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;80:771–784. doi: 10.1016/j.msec.2017.06.004.

Bohrey S., Chourasiya V., Pandey A. Polymeric nanoparticles containing diazepam: Preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016;3:1–7. doi: 10.1186/s40580-016-0061-2.

Martinez Rivas C.J., Tarhini M., Badri W., Miladi K., Greige-Gerges H., Nazari Q.A., Galindo Rodriguez S.A., Roman R.A., Fessi H., Elaissari A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017;532:66–81. doi: 10.1016/j.ijpharm.2017.08.064.

Zhang D, Li Z, Klausen LH, et al (2022) Friction behaviors of two-dimensional materials at the nanoscale. Materials Today Physics 27:100771. https://doi.org/10.1016/j.mtphys.2022.100771

D. U. Kapoor et al., “Polymeric nanoparticles approach and identification and characterization of novel biomarkers for colon cancer,” Results Chem, vol. 6, p. 101167, Dec. 2023, doi: 10.1016/j.rechem.2023.101167.

V. Kugarajah et al., “Nanoparticles and nanofluids: Characteristics and behavior aspects,” in Food, Medical, and Environmental Applications of Nanomaterials, Elsevier, 2022, pp. 41–71. doi: 10.1016/B978-0-12-822858-6.00002-9.

E. Ruiz, V. H. Orozco, L. M. Hoyos, and L. F. Giraldo, “Study of sonication parameters on PLA nanoparticles preparation by simple emulsion-evaporation solvent technique,” Eur Polym J, vol. 173, p. 111307, Jun. 2022, doi: 10.1016/j.eurpolymj.2022.111307.

Y. K. P. G. Aum, P. T. P. Aum, D. N. N. da Silva, L. de Almeida Cavalcante, E. Lins de Barros Neto, and T. N. de Castro Dantas, “Characterization of oil-in-water microemulsions based on ethoxylated surfactant for paraffinic deposits removal,” Fuel, vol. 342, p. 127806, Jun. 2023, doi: 10.1016/j.fuel.2023.127806.




DOI: https://doi.org/10.37591/jopc.v12i2.7446

Refbacks

  • There are currently no refbacks.