Open Access Open Access  Restricted Access Subscription or Fee Access

Fabrication of MOF5 -GO nanocomposites by tailoring graphene oxide

Meena Yadav, Isha Saini, Sita Ram, Tanuj Kumar

Abstract


The present paper focusses on the synthesis of graphene oxide and its nanocomposite with metal organic framework (MOF-5). Graphene oxide (GO) was prepared using modified hummer’s method with different concentrations of oxidizing agent to vary the presence of functional group on the surface of GO. The presence of functional group plays a crucial role in determining the interactions between GO and MOFs. To confirm the presence of different functional groups on the surface of GO, structural and optical characterization were performed. The GO samples were used to successfully synthesize MOF5-GO nanocomposite which were studied for their structural, morphological and optical properties. FTIR and XRD analysis were performed to confirm the formation of nanocomposite. SEM was done to morphologically analyse the nanocomposite. UV-Visible spectroscopy was used to study the variation in the bandgap of samples. TGA was used to depict the thermal behaviour of GO and its nanocomposites with MOF5

Keywords


Nanocomposites, metal organic frameworks, graphene oxide, characterization, properties

Full Text:

PDF

References


L. Bai et al., Graphene for Energy Storage and Conversion: Synthesis and Interdisciplinary Applications, vol. 3, no. 2. 2020.

D. Ghosh, K. Sarkar, P. Devi, K. H. Kim, and P. Kumar, “Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices,” Renew. Sustain. Energy Rev., vol. 135, no. September 2020, p. 110391, 2021, doi: 10.1016/j.rser.2020.110391.

J. Guerrero-Contreras and F. Caballero-Briones, “Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method,” Mater. Chem. Phys., vol. 153, pp. 209–220, 2015, doi: 10.1016/j.matchemphys.2015.01.005.

A. Singh, N. Sharma, M. Arif, and R. S. Katiyar, “Electrically reduced graphene oxide for photovoltaic application,” J. Mater. Res., vol. 34, no. 4, pp. 652–660, 2019, doi: 10.1557/jmr.2019.32.

P. B. Arthi G and L. BD, “A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial,” J. Nanomed. Nanotechnol., vol. 06, no. 01, pp. 1–4, 2015, doi: 10.4172/2157-7439.1000253.

H. jiao Qu et al., “A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications,” J. Porous Mater., vol. 28, no. 6, pp. 1837–1865, 2021, doi: 10.1007/s10934-021-01125-w.

Y. Zheng, S. Zheng, H. Xue, and H. Pang, “Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications,” Adv. Funct. Mater., vol. 28, no. 47, pp. 1–28, 2018, doi: 10.1002/adfm.201804950.

X. Zhang, S. Zhang, Y. Tang, X. Huang, and H. Pang, “Recent advances and challenges of metal–organic framework/graphene-based composites,” Compos. Part B Eng., vol. 230, no. September 2021, p. 109532, 2022, doi: 10.1016/j.compositesb.2021.109532.

B. Szczęśniak, J. Choma, and M. Jaroniec, “Gas Adsorption Properties of hybrid graphene-MOF Materials,” J. Colloid Interface Sci., no. November, 2017, doi: 10.1016/j.jcis.2017.11.049.

L. Zhang, N. Li, H. Jiu, G. Qi, and Y. Huang, “ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2,” Ceram. Int., vol. 41, no. 5, pp. 6256–6262, 2015, doi: 10.1016/j.ceramint.2015.01.044.

R. R. Salunkhe, Y. V. Kaneti, and Y. Yamauchi, “Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects,” ACS Nano, vol. 11, no. 6, pp. 5293–5308, 2017, doi: 10.1021/acsnano.7b02796.

R. R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. H. Kim, and Y. Yamauchi, “Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework,” ACS Nano, vol. 9, no. 6, pp. 6288–6296, 2015, doi: 10.1021/acsnano.5b01790.

P. Wen, P. Gong, J. Sun, J. Wang, and S. Yang, “Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density,” J. Mater. Chem. A, vol. 3, no. 26, pp. 13874–13883, 2015, doi: 10.1039/c5ta02461g.

T. Liu, J. Liu, L. Zhang, B. Cheng, and J. Yu, “Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor,” J. Mater. Sci. Technol., vol. 47, pp. 113–121, 2020, doi: 10.1016/j.jmst.2019.12.027.

G. Kumar and D. T. Masram, “Sustainable Synthesis of MOF-5@GO Nanocomposites for Efficient Removal of Rhodamine B from Water,” ACS Omega, vol. 6, no. 14, pp. 9587–9599, 2021, doi: 10.1021/acsomega.1c00143.

D. Yu et al., “A general route to the synthesis of layer-by-layer structured metal organic framework/graphene oxide hybrid films for high-performance supercapacitor electrodes,” J. Mater. Chem. A, vol. 5, no. 32, pp. 16865–16872, 2017, doi: 10.1039/c7ta04074a.

W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc., vol. 80,no. 6,p. 1339, 1958,doi:10.1021/ja01539a017.

V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, “Effect of reduction time on third order optical nonlinearity of reduced graphene oxide,” Opt. Mater. (Amst)., vol. 66, pp. 460–468, 2017, doi: 10.1016/j.optmat.2017.01.042.

Y. Hou, S. Lv, L. Liu, and X. Liu, “High-quality preparation of graphene oxide via the Hummers’ method: Understanding the roles of the intercalator, oxidant, and graphite particle size,” Ceram. Int., vol. 46, no. 2, pp. 2392–2402, 2020, doi: 10.1016/j.ceramint.2019.09.231.

N. A. Daud, B. W. Chieng, N. A. Ibrahim, Z. A. Talib, E. N. Muhamad, and Z. Z. Abidin, “Functionalizing graphene oxide with alkylamine by gamma-ray irradiation method,” Nanomaterials, vol. 7, no. 6, p. 135, 2017, doi: 10.3390/nano7060135.

A. Kimbonguila, L. Matos, J. Petit, J. Scher, and J.-M. Nzikou, “Effect of Physical Treatment on the Physicochemical, Rheological and Functional Properties of Yam Meal of the Cultivar ‘Ngumvu’ From Dioscorea Alata L. of Congo,” Int. J. Recent Sci. Res., vol. 10, no. August, pp. 30693–30695, 2019, doi: 10.24327/IJRSR.

M. K. Rabchinskii et al., “Manifesting Epoxide and Hydroxyl Groups in XPS Spectra and Valence Band of Graphene Derivatives,” Nanomaterials, vol. 13, no. 1, 2023, doi: 10.3390/nano13010023.

S. Wang et al., “Exploring the Coordination Effect of GO@MOF-5 as Catalyst on Thermal Decomposition of Ammonium Perchlorate,” Nanoscale Res. Lett., vol. 14, no. 1, 2019, doi: 10.1186/s11671-019-3163-z.

M. Pooresmaeil, E. A. Asl, and H. Namazi, “A new pH-sensitive CS/Zn-MOF@GO ternary hybrid compound as a biofriendly and implantable platform for prolonged 5-Fluorouracil delivery to human breast cancer cells,” J. Alloys Compd., vol. 885, p. 160992, 2021, doi: 10.1016/j.jallcom.2021.160992.

B. Bouider, S. Haffad, B. S. Bouakaz, M. Berd, S. Ouhnia, and A. Habi, “MOF-5/Graphene Oxide Composite Photocatalyst for Enhanced Photocatalytic Activity of Methylene Blue Degradation Under Solar Light,” J. Inorg. Organomet. Polym. Mater., 2023, doi: 10.1007/s10904-023-02668-y.

F. T. Johra, J. W. Lee, and W. G. Jung, “Facile and safe graphene preparation on solution based platform,” J. Ind. Eng. Chem., vol. 20, no. 5, pp. 2883–2887, 2014, doi: 10.1016/j.jiec.2013.11.022.

J. Li, X. Zeng, T. Ren, and E. van der Heide, “The preparation of graphene oxide and its derivatives and their application in bio-tribological systems,” Lubricants, vol. 2, no. 3, pp. 137–161, 2014, doi: 10.3390/lubricants2030137.

H. Yan et al., “Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue,” J. Hazard. Mater., vol. 268, pp. 191–198, 2014, doi: 10.1016/j.jhazmat.2014.01.015.

M. Kigozi et al., “Synthesis and characterization of graphene oxide from locally mined graphite flakes and its supercapacitor applications,” Results Mater., vol. 7, no. June, p. 100113, 2020, doi: 10.1016/j.rinma.2020.100113.

S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*,” Graphene, vol. 06, no. 01, pp. 1–18, 2017, doi: 10.4236/graphene.2017.61001.

R. Siburian, H. Sihotang, S. Lumban Raja, M. Supeno, and C. Simanjuntak, “New route to synthesize of graphene nano sheets,” Orient. J. Chem., vol. 34, no. 1, pp. 182–187, 2018, doi: 10.13005/ojc/340120.

V. Mututu, A. K. Sunitha, R. Thomas, M. Pandey, and B. Manoj, “An investigation on structural, electrical and optical properties of GO/ZnO nanocomposite,” Int. J. Electrochem. Sci., vol. 14, no. 4, pp. 3752–3763, 2019, doi: 10.20964/2019.04.49.

G. Wang, X. Sun, C. Liu, and J. Lian, “Tailoring oxidation degrees of graphene oxide by simple chemical reactions,” Appl. Phys. Lett., vol. 99, no. 5, pp. 2011–2014, 2011, doi: 10.1063/1.3622637.

F. M. Casallas Caicedo et al., “Synthesis of graphene oxide from graphite by ball milling,” Diam. Relat. Mater., vol. 109, no. July, p. 108064, 2020, doi: 10.1016/j.diamond.2020.108064.

S. Wang et al., “Exploring the Coordination Effect of GO@MOF-5 as Catalyst on Thermal Decomposition of Ammonium Perchlorate,” Nanoscale Res. Lett., vol. 14, no. 1, p. 345, 2019, doi: 10.1186/s11671-019-3163-z.

C. Petit and T. J. Bandosz, “MOF-graphite oxide nanocomposites: Surface characterization and evaluation as adsorbents of ammonia,” J. Mater. Chem., vol. 19, no. 36, pp. 6521–6528, 2009, doi: 10.1039/b908862h.

Z. Karimzadeh, S. Javanbakht, and H. Namazi, “Carboxymethylcellulose/MOF-5/Graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent,” BioImpacts, vol. 9, no. 1, pp. 5–13, 2019, doi: 10.15171/bi.2019.02.

S. P. Zhang and H. O. Song, “Supramolecular graphene oxide-alkylamine hybrid materials: Variation of dispersibility and improvement of thermal stability,” New J. Chem., vol. 36, no. 9, pp. 1733–1738, 2012, doi: 10.1039/c2nj40214a.

S. Choudhary, H. P. Mungse, and O. P. Khatri, “Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications,” J. Mater. Chem., vol. 22, no. 39, pp. 21032–21039, 2012, doi: 10.1039/c2jm34741e.

A. S. Eltaweil, E. M. Abd El-Monaem, G. M. El-Subruiti, B. M. Ali, M. M. Abd El-Latif, and A. M. Omer, “Graphene oxide incorporated cellulose acetate beads for efficient removal of methylene blue dye; isotherms, kinetic, mechanism and co-existing ions studies,” J. Porous Mater., pp. 607–618, 2022, doi: 10.1007/s10934-022-01347-6.

A. M. Shanmugharaj, J. H. Yoon, W. J. Yang, and S. H. Ryu, “Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths,” J. Colloid Interface Sci., vol. 401, pp. 148–154, 2013, doi: 10.1016/j.jcis.2013.02.054.

C. Zhu, S. Guo, Y. Fang, and S. Dong, “Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets,” ACS Nano, vol. 4, no. 4, pp. 2429–2437, 2010, doi: 10.1021/nn1002387.

Y. Zhao, H. Ding, and Q. Zhong, “Synthesis and characterization of MOF-aminated graphite oxide composites for CO 2 capture,” Appl. Surf. Sci., vol. 284, pp. 138–144, 2013, doi: 10.1016/j.apsusc.2013.07.068.

S. Guo, S. Garaj, A. Bianco, and C. Ménard-Moyon, “Controlling covalent chemistry on graphene oxide,” Nat. Rev. Phys., vol. 4, no. 4, pp. 247–262, 2022, doi: 10.1038/s42254-022-00422-w.

V. Gupta, N. Sharma, U. Singh, M. Arif, and A. Singh, “Higher oxidation level in graphene oxide,” Optik (Stuttg)., vol. 143, pp. 115–124, 2017, doi: 10.1016/j.ijleo.2017.05.100.

H. Yu, B. Zhang, C. Bulin, R. Li, and R. Xing, “High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method,” Sci. Rep., vol. 6, no. July, pp. 1–7, 2016, doi: 10.1038/srep36143.

A. H. de Lima et al., “Origin of optical bandgap fluctuations in graphene oxide,” Eur. Phys. J. B, vol. 93, no. 6, 2020, doi: 10.1140/epjb/e2020-100578-7.

T. A. Amollo, G. T. Mola, and V. O. Nyamori, “High-performance organic solar cells utilizing graphene oxide in the active and hole transport layers,” Sol. Energy, vol. 171, no. December 2017, pp. 83–91, 2018, doi: 10.1016/j.solener.2018.06.068.

M. A. Velasco-Soto, S. A. Pérez-García, J. Alvarez-Quintana, Y. Cao, L. Nyborg, and L. Licea-Jiménez, “Selective band gap manipulation of graphene oxide by its reduction with mild reagents,” Carbon N. Y., vol. 93, pp. 967–973, 2015, doi: 10.1016/j.carbon.2015.06.013.

A. S. Dobrota, I. A. Pašti, S. V. Mentus, and N. V. Skorodumova, “A general view on the reactivity of the oxygen-functionalized graphene basal plane,” Phys. Chem. Chem. Phys., vol. 18, no. 9, pp. 6580–6586, 2016, doi: 10.1039/c5cp07612a.

T. T. Tran, T. C. Vu, H. Van Hoang, W. F. Huang, H. T. Pham, and H. M. T. Nguyen, “How are Hydroxyl Groups Localized on a Graphene Sheet?,” ACS Omega, vol. 7, no. 42, pp. 37221–37228, 2022, doi: 10.1021/acsomega.2c03447.

A. Mathkar et al., “Controlled, stepwise reduction and band gap manipulation of graphene oxide,” J. Phys. Chem. Lett., vol. 3, no. 8, pp. 986–991, 2012, doi: 10.1021/jz300096t.

A. Hunt, E. Z. Kurmaev, and A. Moewes, “Band gap engineering of graphene oxide by chemical modification,” Carbon N. Y., vol. 75, no. April, pp. 366–371, 2014, doi: 10.1016/j.carbon.2014.04.015.

A. R. Kshirsagar, X. Blase, C. Attaccalite, and R. Poloni, “Strongly Bound Excitons in Metal-Organic Framework MOF-5: A Many-Body Perturbation Theory Study,” J. Phys. Chem. Lett., vol. 12, no. 16, pp. 4045–4051, 2021, doi: 10.1021/acs.jpclett.1c00543.


Refbacks

  • There are currently no refbacks.