Open Access Open Access  Restricted Access Subscription or Fee Access

Investigating the Influence of Shock Waves on the Dielectric Characteristics of ZMTC Crystals

Begene Prince, N. Srinivasan Arunsankar, R. Jayaraman, S. Jeyaram, P. Saravanan, M. Vimalan, T. Rajesh Kumar

Abstract


Zinc mercury thiocyanate (ZMTC) is an organometallicnonlinearly optical (NLO) single crystal that has been grown in an aqueous solution using the SR technique. Novel, non-destructive method is suggested and shown to enhance the electrical properties of crystals through the use of shock waves. A tabletop shock tube, operating at a Mach number of 1.7, generates shock waves that are subsequently loaded into a zinc mercury thiocyanate (ZMTC) crystal. This process, driven by pressure, induces changes in the dielectric characteristics of the crystal. The shock waves are initiated perpendicular to the (1 1 0) plane of the crystal. The electrical properties, including dielectric constant, dielectric loss, AC conductivity, and activation energy of the ZMTC crystal, were examined across a frequency spectrum ranging from 4 Hz to 8 MHz. The analysis encompasses both with and without shock wave loaded conditions.The results of the experiments show that the dielectric constant of ZMTC crystal is prone to respond to shockwaves, with the rate increasing for the with shock wave loaded ZMTC sample. The suggested approach offers a viable alternative to traditional doping methods for customizing the dielectric characteristics of crystals in the ZMTC family.


Keywords


SR method, Shock tube, ZMTC crystal, dielectric characteristics, Etching

Full Text:

PDF

References


Kalaiarasi, S.; Sivakumar, A.; Martin Britto Dhas, S. A. M.; Jose, M.. Shock Wave Induced Anatase to Rutile TiO2 Phase Transition Using Pressure Driven Shock Tube. Mater. Lett. 2018, 219, 72–75. DOI: 10.1016/j.matlet.2018.02.064

Boldyreva, E. V.; Ivashevskaya, N.; Sowa, H.; Ahsbahs, H.; Weber, H.-P. Z. Kristallogr. 2005, 220, 50–57.

Boldyreva, E. V.; Ivashevskaya, S. N.; Sowa, H.; Ahsbahs, H.; Weber, H.-P.. Effect of High Pressure on Crystalline Glycine: A New High-Pressure Polymorph. Dok. Phys. Chem. 2004, 396 (1–3), 111–114. DOI: 10.1023/B:DOPC.0000029166.57397.2d

Zhou, X.; Miao, Y. R.; Shaw, W. L.; Suslick, K. S.; Dlott, D. D.. Shock Wave Energy Absorption in Metal-Organic Framework. J. Am. Chem. Soc. 2019, 141 (6), 2220–2223. DOI: 10.1021/jacs.8b12905

Gopinath, N. K.; Jagadeesh, G.; Basu, B. J. Am. Ceram. Soc. 2019, 00, 1–14.

Su, Z.; Shaw, W. L.; Miao, Y. R.; You, S.; Dlott, D. D.; Suslick, K. S.. Shock Wave Chemistry in a Metal-Organic Framework. J. Am. Chem. Soc. 2017, 139 (13), 4619–4622. DOI: 10.1021/jacs.6b12956

de Ress, T. eguier, O.O. Kurakevych, A. Chabot, J.P. Petitet, V.L. Solozhenko. J. Appl. Phys. 2010, 108, 083522.

Hooks, D. E.; Ramos, K. J.; Martinez, A. R.. Elastic-Plastic Shock Wave Profiles in Oriented Single Crystals of Cyclotrimethylene Trinitramine (RDX) at 2.25GPa. J. Appl. Phys. 2006, 100 (2), 024908. DOI: 10.1063/1.2214639

Mao, H. K.; Bassett, W. A.; Takahashi, T.. Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 Kbar. J. Appl. Phys. 1967, 38 (1), 272–276. DOI: 10.1063/1.1708965

Johnson, Q.; Mitchell, A. C.; Evans, L.. X-Ray Diffraction Study of Single Crystals Undergoing Shock-Wave Compression. Appl. Phys. Lett. 1972, 21 (1), 29–30. DOI: 10.1063/1.1654205

Sivakumar, A.; Victor, C.; Nayak, M. M.; Dhas, S. A. M. B.. Structural, Optical, and Morphological Stability of ZnO Nano Rods under Shock Wave Loading Conditions. Mater. Res. Express 2019, 6 (4), 045031. DOI: 10.1088/2053-1591/aafae6

Hazen, R. M.; Finger, L. W.. High-Temperature Diamond-Anvil Pressure Cell for Single-Crystal Studies. Rev. Sci. Instrum. 1981, 52 (1), 75–79. DOI: 10.1063/1.1136450

Boldyreva, E. V.; Ivashevskaya, N.; Sowa, H.; Ahsbahs, H.; Weber, H.-P. Z. Kristallogr. 2005, 220, 50.

Boldyreva, E. V.; Ivashevskaya, S. N.; Sowa, H.; Ahsbahs, H.; Weber, H.-P.. Effect of High Pressure on Crystalline Glycine: A New High-Pressure Polymorph. Dokl. Phys. Chem. 2004, 396 (1–3), 111–114. DOI: 10.1023/B:DOPC.0000029166.57397.2d

Lin, E.; Shi, H.; Niu, L.; Simul, M. Mater. Sci. Eng. 2014, 22, 035012.

Urtiew, P. A.. Effect of Shock Loading on Transparency of Sapphire Crystals. J. Appl. Phys. 1974, 45 (8), 3490–3493. DOI: 10.1063/1.1663807

Ichiyanagi, K.; Adachi, S.-I.; Nozawa, S.; Hironaka, Y.; Nakamura, K. G.; Sato, T.; Tomita, A.; Koshihara, S.-Y.. Shock-Induced Lattice Deformation of CdS Single Crystal by Nanosecond Time-Resolved Laue Diffraction. Appl. Phys. Lett. 2007, 91 (23), 231918. DOI: 10.1063/1.2819617

Dreger, Z. A.; Gruzdkov, Y. A.; Gupta, Y. M.; Dick, J. J.. Shock Wave Induced Decomposition Chemistry of Pentaerythritol Tetranitrate Single Crystals: Time-Resolved Emission Spectroscopy. J. Phys. Chem. B 2002, 106 (2), 247–256. DOI: 10.1021/jp011682v

Sivakumar, A.; Sahaya Jude Dhas, S.; Sivaprakash, P.; Almansour, A. I.; Kumar, R. S.; Arumugam, N.; Arumugam, S.; Martin Britto Dhas, S. A.. The Switchable Phase Transition of Sodium Sulfate Crystals Activated by Shock Waves. New J. Chem. 2021, 45 (36), 16529–16536. DOI: 10.1039/D1NJ02974F

Sivakumar, A.; Devi, S. R.; Dhas, S. S. J.; Kumar, R. M.; Bharathi, K. K.; Dhas, S. A. M. B.. Switchable Phase Transformation (Orthorhombic–Hexagonal) of Potassium Sulfate Single Crystal at Ambient Temperature by Shock Waves. Cryst. Growth Des. 2020, 20 (11), 7111–7119. DOI: 10.1021/acs.cgd.0c00214

Sivakumar, A.; Manivannan, M.; Sahaya Jude Dhas, S.; Kalyana Sundar, J.; Jose, M.; Dhas, S. A. M. B.. Tailoring the Dielectric Properties of KDP Crystals by Shock Waves for Microelectronic and Optoelectronic Applications. Mater. Res. Express 2019, 6 (8), 086303. DOI: 10.1088/2053-1591/ab1c96

Sivakumar, A.; Sahaya, S.; Dhas, J.; Balachandar, S.; Britto Dhas, S. A. M. Z. Kristallogr. 2019, 234, 557–567.

Sivakumar, A.; Eniya, P.; Sahaya, S.; Dhas, J.; Kumar, Raju S.; Almansour, A. I.; Sivashanmugan, K.; Kalyana Sundar, J.; Britto Dhas, S. A. M. Cryst. Engg. Comm. 2021, 24, 52–56.

Sivakumar, A.; Sahaya, S.; Dhas, J.; Almansour, A. I.; Kumar, Raju S.; Arumugam, N.; Britto Dhas, S. A. M. Cryst. Eng. Commun. 2021, 23, 7044.

Sivakumar, A.; Reena Devi, S.; Thirupathy, J.; Mohan Kumar, R.; Martin Britto Dhas, S. A.. Effect of Shock Waves on Structural, Thermophysical and Dielectric Properties of Glycine Phosphate (GPI) Crystal. J. Electron. Mater. 2019, 48 (11), 7216–7225. DOI: 10.1007/s11664-019-07510-1

Shusta, V. S.; Prits, I. P.; Guranich, P. P.; Gerzanich, E. I.; Silvika, A. G. Condens. Mater. Phys. 2007, 10, 91.

Suchanicz, J.; Wojcik, K.. Effect of External Stress on Dielectric Properties of PbTiO3 Single Crystal. Mater. Sci. Eng. B 2003, 104 (1–2), 31–35. DOI: 10.1016/S0921-5107(03)00263-0

Kedyulich, V. M.; Silvika, A. G.; Gerzanich, E. I.; Guivan, A. M.; Lukach, P. M. Condens. Mater. Phys. 2003, 6, 271.

Stasyuk, I. V.; Levitskii, R. R.; Monia, A. P. Condens. Mater. Phys. 1999, 2, 731.

Goma, S.; Padma, C. M.; Mahadevan, C. K. Dielectric Parameters of KDP Single Crystals Added with Urea. Mater. Lett. 2006, 60 (29–30), 3701–3705. DOI: 10.1016/j.matlet.2006.03.092

Charakhchyan, A. A.; Milyavskii, V. V.; Khishchenko, K. V.. The Use of Models of Mixture for Analysis of Shock-Wave Experiments with Incomplete Phase Transformation. High Temp. 2009, 47 (2), 235–242. DOI: 10.1134/S0018151X0902014X

Zhang, J.; Branicio, P. S.. Molecular Dynamics Simulations of Plane Shock Loading in SiC. Procedia Eng. 2014, 75, 150–153. DOI: 10.1016/j.proeng.2013.11.032

Kanel’, G. I.; Fortov, V. E.; Razorenov, S. V. PHYS-USP 2007, 50 (8), 771. DOI: 10.1070/PU2007v050n08ABEH006327

Luo, S.-N.; Germann, T. C.; Tonks, D. L.; An, Q.. Shock Wave Loading and Spallation of Copper Bicrystals with Asymmetric Σ3⟨110⟩ Tilt Grain Boundaries. J. Appl. Phys. 2010, 108 (9), 093526. DOI: 10.1063/1.3506707

Gnatyuk, V. A.; Aoki, T.; Hatanaka, Y.. Laser-Induced Shock Wave Stimulated Doping of CdTe Crystals. Appl. Phys. Lett. 2006, 88 (24), 242111. DOI: 10.1063/1.2213511

Hooks, D. E.; Ramos, K. J.; Martinez, A. R.. Elastic-Plastic Shock Wave Profiles in Oriented Single Crystals of Cyclotrimethylene Trinitramine (RDX) at 2.25GPa. J. Appl. Phys. 2006, 100 (2), 024908. DOI: 10.1063/1.2214639

Mullar, F.; Schulte, E.; Naturforsch, Z., 33, 918 1978.

Dreger, Z. A.; Gruzdkov, Y. A.; Gupta, Y. M.; Dick, J. J.. Shock Wave Induced Decomposition Chemistry of Pentaerythritol Tetranitrate Single Crystals: Time-Resolved Emission Spectroscopy. J. Phys. Chem. B 2002, 106 (2), 247–256. DOI: 10.1021/jp011682v

Urtiew, P. A.. Effect of Shock Loading on Transparency of Sapphire Crystals. J. Appl. Phys. 1974, 45 (8), 3490–3493. DOI: 10.1063/1.1663807

Weir, S. T.; Mitchell, A. C.; Nellis, W. J.. Electrical Resistivity of Single-Crystal Al2O3 Shock-Compressed in the Pressure Range 91–220 GPa (0.91–2.20 Mbar). J. Appl. Phys. 1996, 80 (3), 1522–1525. DOI: 10.1063/1.362946

Donald, B.; Larson, A. Appl. Phys. 1967, 38, 1541.

Xu, D.; Yu, W.-T.; Wang, X.-Q.; Yuan, D.-R.; Lu, M.-K.; Yang, P.; Guo, S.-Y.; Meng, F.-Q.; Jiang, M.-H.. Zinc Mercury Thiocyanate (ZMTC). Acta Crystallogr. C Cryst. Struct. Commun. 1999, 55 (8), 1203–1205. DOI: 10.1107/S0108270199005983

Rajesh Kumar, T.; Jerald Vijay, R.; Jeyasekaran, R.; Selvakumar, S.; Antony Arockiaraj, M.; Sagayaraj, P.. Growth, Linear and Nonlinear Optical And, Laser Damage Threshold Studies of Organometallic Crystal of MnHg(SCN)4. Opt. Mater. 2011, 33 (11), 1654–1660. DOI: 10.1016/j.optmat.2011.04.033

Nisha Santha Kumari, P.; Kalainathan, S.; Arunai Nambi Raj, N.. Study of Optimum Growth Condition of Zinc Cadmium Thiocyanate (ZCTC) Single Crystals in Silica Gel. Mater. Lett. 2007, 61 (22), 4423–4425. DOI: 10.1016/j.matlet.2007.02.027

Ambujam, K.; Selvakumar, S.; Joseph, G. P.; Vetha Potheher, I. V.; Sagayaraj, P.. Thermal, Optical, and Electrical Properties of Gel Grown ZMTC. Mater. Manuf. Processes 2007, 22 (3), 351–356. DOI: 10.1080/10426910701190766

Ansari, M. M. N.; Khan, S.. Structural, Electrical and Optical Properties of Sol-Gel Synthesized Cobalt Substituted MnFe 2 O 4 Nanoparticles. Phys. B 2017, 520, 21–27. DOI: 10.1016/j.physb.2017.06.020

Saravanan, P.; SenthilKannan, K.; Divya, R.; Vimalan, M.; Tamilselvan, S.; Sankar, D. J. Mater. Sci. Mater. Electron. 2020, 31, 4301.

Joesna, G.; Saravanan, P.; Zema Ferin, R.; Gunachitra, T.; Sankar, D.; Tamilselvan, S.; Meena, M.; SenthilKannan, K.; Vimalan, M.; Gulam Mohamed, M. J. Mater. Sci. Mater. Electron. 2022, 33, 14144–14158.

SujathaT., Cyrac Peter A., Vimalan M. Merline Shyla J., Madhavan J. Phys. B 2017, 405, 3365.

Saravanan, P.; SenthilKannan, K.; Mustafa, A.; Vimalan, M.; Bououdina, M.; Balasubramanian, S.; Tamilselvan, S. J. Mater. Sci. Mater. Electron. 2021, 32, 590.

Sivakumar, A.; Reena Devi, S.; Thirupathy, J.; Mohan Kumar, R.; Martin Britto Dhas, S. A.. Effect of Shock Waves on Structural, Thermophysical and Dielectric Properties of Glycine Phosphate (GPI) Crystal. J. Electron. Mater. 2019, 48 (11), 7216–7225. DOI: 10.1007/s11664-019-07510-1

Parashar, J.; Saxena, V. K.; Jyoti, D.; Bhatnagar, D.; Sharma, K. B.. Dielectric Behaviour of Zn Substituted Cu Nano-Ferrites. J. Magn. Magn. Mater. 2015, 394, 105–110. DOI: 10.1016/j.jmmm.2015.06.044

Hench, L. L.; West, J. K. Principles of Electronic Ceramics, 1989.

Balarew, C.; Duhlev, R. J. S. Application of the Hard and Soft Acids and Bases Concept to Explain Ligand Coordination in Double Salt Structures. Journal of Solid State Chemistry 1984, 55 (1), 1–6. DOI: 10.1016/0022-4596(84)90240-8


Refbacks

  • There are currently no refbacks.