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Abstract 
This paper addresses the electromagnetic transients of a non-uniform overhead transmission 

line conductor with due consideration of its receiving-end load, its sag and of the earth 

parameters. The concept of the complex penetration depth is adopted in the formulation of the 

line’s equations in the s-domain. A relation for the conductor height as a function of the 

longitudinal co-ordinate is derived and incorporated in the analysis. The two simultaneous 

differential equations governing the voltage and current are solved analytically in order to get 

closed-form s-domain expressions for their distributions. The application of numerical 

Laplace inversion will then yield the distributions in the time domain. Results of different case 

studies are presented and discussed. The paper is then concluded by validating the proposed 

technique by discussing the results of its application to a case study of a known analytical 

solution. 
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INTRODUCTION 

The transient analysis of the power 

transmission elements in general and of the 

non-uniform overhead lines in particular, was 

the main topic of several publications [1–15]. 

An interesting example is the transient 

performance of sagging overhead lines. The 

conductor height above ground, which can be 

also of an uneven terrain, will then be a 

function of the longitudinal co-ordinate of the 

points under consideration. Special situations 

such as river crossings comprising wide span 

towers were addressed by Saied [13]. Lines 

with exponentially varying parameters 

constitute another important category of non-

uniformity, for which results of interesting 

case studies are documented by Nguyen et al. 

and Saied [7, 8]. In addition to approaches 

based on circuit theory, several investigators 

could develop solutions based on the method 

of characteristics of the lines’ partial 

differential equations [5].  
 

The time-domain analysis by Theethayi et al. 

[6] deals with the lightning performance of 

multi-conductor railway lines as affected by 

the conductors’ heights and the losses in the 

earth. Martins et al. [9] addresses the accuracy 

of evaluating the line’s internal conductor and 

earth return impedances. The paper also 

suggests approximate impedance formulae and 

their impact on the line’s time domain 

transient response. The interesting concept of 

the frequency dependent complex penetration 

depth and its efficient application to the 

transients of lines involving earth return is 

presented by Deri et al. [10]. The paper 

focuses mainly on the longitudinal impedance. 

Its relation to the Carson’s formulae is also 

pointed out and discussed. Several statements 

have been made by Moura [11] aiming at 

improving the modeling of overhead lines 

when investigating high frequency 

atmospheric overvoltages. One of the 

important conclusions is that neglecting the 

effect of the earth on the line’s shunt elements 

is an acceptable approximation for the usual 

values of earth conductivity. This also agrees 

with the related comments made by Gutitrrez 

et al. [5] addressing the effect of frequency 

and treats the earth as a dispersive medium. 

Antonescu and Munteanu [12] present the 

mailto:m.saied@ieee.org


 

Electromagnetic Transients of a Sagging Conductor                                                                 Mohamed M. Saied 

 

 

 JoPEPS (2017) 47-59 © STM Journals 2017. All Rights Reserved                                                             Page 48 

computed results of case studies involving 

several shapes of exciting impulse voltages. 

They demonstrate the impact of the source 

voltage wave shape, the tower type and the 

conductors’ data on the resulting transients 

along the sagging lines.  
 

This paper is a contribution to this area of 

research and has the following main 

objectives: 

1. To suggest an alternative direct method for 

analyzing the electromagnetic transients in 

sagging loaded overhead lines above lossy 

earth. The derived model will take into 

account the losses dissipated in the line’s 

series and shunt elements and in the earth 

return. The frequency dependence of the 

earth return will be also included. 

2. To present and discuss the results of 

several case studies investigating the effect 

of the receiving-end termination, the line 

and earth parameters as well as the number 

of tower spans on the transient response. 

The results will be given in terms of both 

the time and the co-ordinate along the line. 

 

METHOD OF ANALYSIS 

Geometrical Considerations 

Figure 1 depicts one span length d of a typical 

overhead line conductor. The minimum and 

maximum conductor heights are denoted Hmin 

and Hmax, respectively. The per unit conductor 

sag is defined as S = (Hmax-Hmin)/Hmax. If the 

conductor centenary is approximated by a 

parabolic expression, the following equation 

describes the conductor height H(x)  as a 

function of the horizontal co-ordinate x, 

measured from the centerline of the left tower: 
 

 H(x) = Hmax [1-S+S(1-
2x

d
)
2

]            (1) 
 

The corresponding expression for a line 

having N tower spans is then given by 

 H(x)  =  Hmax[1-S+S(1-
2x

d
)
2

 ] [u(x)-u(x-d)] + 

 Hmax[1-S+S(1-
2[x-d]

d
)
2

 ] [u(x-d)-u(x-2d)] + 

 Hmax[1-S+S(1-
2[x-2d]

d
)
2

] [u(x-2d)-u(x-3d)] +  

 Hmax[1-S+S(1-
2[x-3d)

d
)
2

] [u(x-3d)-u(x-4d)] +... 

+, 

or, equivalently with the number of tower 

spans N included,  

 

H(x,N) = 

∑ Hmax [1-S+S (1-
2[x-[i-1]]d)

d
)

2

 ] [u(x-[i -1]d)-u(x-i.d)]   i = N
i = 1      

                     (2)  

 

where, u(x) is the unit-step function. 

Eq. (2) is valid over the region 0≤x≤N.d. 

As an example, Figure 2 depicts the function 

H(x,5)  representing five span lengths.

 

 
Fig. 1: One span Length of the Overhead Line. (d = 329.2m, Hmin = 15.24 m, Hmax = 26.2 m). 
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Fig. 2: The Conductor Height for Five Span Lengths, According to Eq. (2) for H(x,5). 

 

The Line’s Simulation 

After including the effect of the earth return 

according to the detailed derivations by 

Thrimawithana and Madawala [2], the series 

impedance  zseries  per meter can then be 

expressed as 

 
 zseries(s,x,N) = rearth+(

k rdc
2

) 
 I

0(k√s )

I1(k√s )
 √s +s 

µo
2π 

 ln [
2[H(x,N)+p(s)]

radius
]

     

(3) 

Where, rearth  and rdc  
are the return path 

resistance and the conductor’s DC resistance 

in Ω/m, respectively. The term k is defined 

by k = radius √µσ. 
 

Eq. (3) indicates that zseries(s,x,N) is composed 

of three components: the internal conductor 

impedance due to the internal magnetic fields, 

the external impedance originating from the 

magnetic flux outside the conductor and the 

return path impedance [2]. 
 

The two terms I0(k√s ),I1(k√s )  are the 

modified Bessel functions of the first kind. 
Furthermore, the shunt admittance per meter is 

given by 

 y
shunt

(s,x,N) = g+s
4πεo

ln [
2[H(x,N)]

radius
]
      (4) 

Where, g is the shunt conductance in(Ω.m)
-1

. 

s is the Laplace operator 

 µ
o
, εo are the permittivity and permeability of 

free space 

radius is the conductor radius 

p(s) is the complex penetration depth, defined 

as p(s) = 1/√sσμ
o
. 

In which σ denotes the earth conductivity.  

The line’s simultaneous differential equations 

are therefore, 

 

 
dV(s,x,N)

dx
 = -I(s,x,N).zseries(s,x,N)       (5) 

 
 dI(s,x,N)

dx
 = -V(s,x,N).y

shunt
(s,x,N)     (6) 

 

The boundary conditions are  V(s,0,N) = E(s) 

at the sending end (x = 0) and  

 
V(s,N.d,N)

I(s,N.d,N)
 = Zload(s) at the receiving 

end (x = N.d). 
 

E(s) denotes the Laplace transform of the 

source voltage e(t). 

 

The Solution Technique 

The solution is based on dividing the total line 

length (N.d) into a large number (K) of 

sections of equal lengths b =
N.d

K
  each. They 

will not be identical because the conductor 

height and, accordingly, its circuit parameters 

per unit length are functions of the co-ordinate 

x. The voltages at any two consecutive nodes 

Vk (s, N), Vk+1 (s, N) and the corresponding 

currents Ik (s, N), Ik+1 (s, N) at the beginning 

and end of the branch connecting them are 

related by the equations: 

Vk+1 (s, N) = Vk (s, N) - Ik (s, N) zseies (s, [k + 

0.5].b, N)                                                       (7) 

 

Ik+1 (s, N) = Ik (s, N) - Vk (s, N) yshunt (s, [k + 

0.5].b, N)                                                       (8) 
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The above equations indicate that the 

impedance value zseies at the midpoint of the 

connecting branch is used for computing the 

voltage drop, while the admittance value yshunt 

at the midpoint is substituted for finding the 

change in the longitudinal current. A sufficient 

number of equations will be available in order 

to get closed-form analytical s-domain 

expressions for all the node voltages and 

branch currents using the Mathematica 

command Solve. 

 

The resulting expressions will include: 

i. the Laplace operator s,  

ii. the location along the line x, 

iii. the span length d, 

iv. the number of line’s tower spans N, 

v. the line constants (rdc, g, radius),  

vi. the minimum and maxi mum conductor 

heights (H
min

, Hmax ). 

vii. the earth conductivity σ.  

 

Applying the numerical inverse Laplace 

transform according to Hosono’s algorithm 

[16], the time response of the different 

voltages and currents along the line can be 

obtained.  
 

According to the Hosono algorithm, the time 

function )(tf  corresponding to )(sF  is given 

by 

f(t)≈
e a

t
[∑ F n+

1

2 m+1
∑ A mnF l+n

m
n = 0

l-1

n = 1 ]    (9) 

 

where 

F n = (-1) nIm[F [a+
j(n-0.5)π

t
] ]      (10) 

and 

a≫1, A mn-1 = A mn n
m+1+( n

m+1)        (11) 

 

In this study the value a = 5 has been assumed. 

More details are available by Saied [8,13] and 

Hosono [16]. 
 

As will be shown, the presented procedure can 

handle situations where the line constants 

and/or the earth conductivity σ are non-

uniformly distributed, i.e., functions of the co-

ordinate x. 
 

SAMPLE RESULTS 

The Network Data 

The following results refer to a single phase, 

one single ASCR horizontally suspended 

conductor of a 2 inch diameter. The earth 

conductivity is assumed σ = 0.01(Ω.m)
-1

, the 

span d = 329.2 m. The conductor heights are 

Hmin = 15.24 m and Hmax = 26.2 m. The shunt 

conductance is g = 0.01(Ω.m)
-1

. 
 

In general, a source voltage having a unit-step 

wave form is assumed. In one of the case 

studies, however, the voltage waveform 

depicted in Figure 3 will be considered. It has 

been used by several investigators, as a test 

function, and is defined by the following 

equation: 
e(t) = 1-e-4545450 t                                 (12) 

 

Where, t is the time in seconds. 

Its Laplace transform is  

E(s) = 
1

s
-

1

s+4545450
             (13) 

 

The following results will describe the time 

response of the line’s receiving-end as well as 

the voltage distribution along the conductor at 

specific points in time.  
 

Transients of a Resistively Loaded Line 

Figure 4 illustrates the transient response of 

the voltage at the line’s receiving end which is 

terminated by each of the indicated three 

resistance values R. The time range is 

0≤t≤10 µs. The curve on the top shows the 

step response for the no-load case, i.e., R = ∞. 

It increases very rapidly from zero to a per unit 

values very close to one. The lower curve is 

for the smaller load resistance R = 1000 Ω. 

The voltage needs a relatively longer time in 

order to approach a final value slightly below 

1 per unit. The same trend is valid for the 

smallest load resistance R = 100 Ω described 

by the lowest trace. It indicates a voltage value 

of 0.9812 per unit at t = 10 µs. 
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Fig. 3: One of the assumed Wave Shapes of the Source Voltage e(t) over the Time Range 0≤t≤1.5 µs 

as described by Eq. (10). 
 

 
Fig. 4: The Transient Response of the Receiving End Voltages for Three Resistive Loading 

Conditions. The Source Voltage is e(t) = u(t). 𝑔 = 0.01, σ = 0.01(Ω. 𝑚)−1. 

 

 
Fig. 5: The Distribution of the Transient Voltage along the Line at t = 5 µs. 
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Fig. 6: The Transient Response of the Receiving End Voltages for Three Values of the Line’s 

Termination Inductances. g = 0.01, σ = 0.01(Ω.m)
-1

. The Source Voltage is e(t) = u(t). 

The distributions of the instantaneous voltage 

along the transmission line for the three 

loading conditions at the time point t = 5 µs 

are depicted in Figure 5. The three curves are 

almost linear. They start with a voltage value 

of 1 per unit at the source (x = 0). The 

receiving end voltages at this point in time 

increase to values ranging from about 0.970 

per unit for R = 100 Ω to approximately 1.00 

per unit at no load. 
 

Transients of an Inductively Loaded Line 

The instantaneous voltages at the receiving 

end are illustrated in Figure 6 for the indicated 

three values of a purely inductive load. The 

almost flat horizontal curve corresponding to 

the load inductance L = ∞ is identical to the 

one describing the no load condition in Figure 

4, as expected. At t = 10 µs, the almost 

linearly decreasing voltages for L = 1 mH and 

L = 10 mH drop to the approximate values 

0.47 and 0.945 per unit, respectively. 
 

A snap shot of the voltage distributions along 

the line, at the time point t = 5 µs, is given in 

Figure 7. The voltages decrease almost 

linearly with the co-ordinate x, and drop to 

about 0.946 and 0.475 per unit for the load 

inductances L = 10 and 1 mH, respectively. 

These voltages agree with the corresponding 

values in Figure 6 at t = 5 µs.  
 

Transients of a Capacitively Loaded Line 

The three load capacitance values C = 0 (i.e., 

no load), C = 0.1 nF and C = 0.2 nF will be 

considered in this section. The source voltage 

e(t) and its Laplace transform E(s) are as given 

by Eqs. (10) and (11). The computation results 

for the receiving end voltage are depicted in 

Figure 8. Following the initial rapid changes 

immediately after the application of the 

voltage source, the three voltages will 

gradually approach the (almost equal) final 

values very close to 1.00 per unit. Beyond t = 

1 µs, there is not much difference between the 

three curves. A voltage overshoot of about 

82% is noticed if the load capacitance is 

0.2 nF. As for the voltage distribution along 

the line at the time point t = 0.5 µs, the results 

in Figure 9 indicate that the voltages increase 

almost linearly with the distance x measured 

from the supply point. The rate of voltage rise 

per unit length increases with the value of the 

load capacitance. The voltage increase over 

the entire line assumes the small values of 

approximately 0, 0.11 and 0.22 per unit for the 

load capacitances C = 0 nF, C = 0.1 nF and C 

= 0.2 nF, respectively. 
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Fig. 7: The Instantaneous Voltage versus the Co-ordinate x at t = 5 µs. 

 

 

 
Fig. 8: The Transient Response of the Receiving End Voltages for Three Capacitive Loading 

Conditions. The Source Voltage e(t) is given by Eq. (10). 

Lowest curve: Load capacitance C = 0 nF, 

Middle curve: Load capacitance C = 0.1 nF, 

Upper curve: Load capacitance C = 0.2 nF. 
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Fig. 9: The Voltage Distribution along the Line at t = 0.5 µs. 

Lowest curve: Load capacitance = 0 nF, 

Middle curve: Load capacitance = 0.1 nF, 

Upper curve: Load capacitance = 0.2 nF. 

 

Impact of the Earth Conductivity σ 

In order to clarify this point, two approaches 

will be discussed. The first one deals with the 

comparison of cases having different values of 

uniformly distributed σ. The second situation 

deals with the case of a non-uniform 

distribution of the earth conductivity. 
 

Comparing Cases of Different but Uniformly 

Distributed Soil Conductivities  

The three plots in Figure 10 illustrate the 

transient response of the receiving end voltage 

following the application of a unit-step source. 

The line is loaded by a 0.01 µF capacitor. The 

plots correspond to the following values of 

uniformly distributed earth conductance: σ = 

0.00001, σ = 0.01 and σ = 10(Ω.m)
-1

. The 

upper curve with the least damping is for σ = 

0.00001 i.e., a highly resistive soil. It indicates 

a more than 50% overshoot of the receiving 

end voltage immediately after applying the 

source. The lowest curve is for a very 

conductive soil (σ = 10) and exhibits an almost 

zero voltage overshoot. The intermediate curve 

is for σ = 0.01 (Ω.m)
-1

 and leads to an 

approximate overshoot of just 10%. The 

distribution of the instantaneous voltage along 

the line at t = 5 µsec for the three values of 

uniform earth conductivities is described by 

the curves of Figure 11. Under the considered 

capacitive loading condition, the instantaneous 

voltage increases almost linearly with the 

distance x. The receiving end voltages assume 

the values 1.015, 1.0042 and 1.00 per unit for 

the three σ values 0.00001, 0.01 and 10, 

respectively. 
 

A Case of Non-Uniformly Distributed Earth 

Conductivities σ  

This section will demonstrate the capability of 

the suggested approach to dandle situations 

involving non-uniform earth conductivities, 

i.e., σ is dependent on the co-ordinate x. 

Referring to Eq. (3), the corresponding 

analytical expression of σ will be substituted 

in the relation of the complex penetration 

depth. The following results refer to the case 

of a linearly decreasing σ (with the distance x 

from the line’s source terminal). For simplicity, 

the following idealized relation is assumed:  
σ(x) = a+b x                                               (14) 

 

The shape of the function σ(x)will depend on 

the numerical values of the two constants a 
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and b. For instance, b = 0 represents the 

special case of the uniform distribution σ = a, 

whereas a = 0 describes a linearly changing 

earth conductivity beginning with the value 

zero at the source terminal. The plots in Figure 

12 illustrate the results for the case described 

by a = 0.1 and b = - 0.1/(span length d). 

Accordingly, σ has the value 0.1 at the source 

and decreases linearly to zero at the receiving 

end. Its average value is therefore, 0.05 

(Ω.m)
-1

. The line is loaded by a 100 Ω ohmic 

resistance.

 
 

 
Fig. 10: The Transient Receiving End Voltage as affected by the Soil Conductivity σ. The source 

voltage is e(t) = u(t). 
 

 
Fig. 11: Effect of the Soil Conductivity on the Distribution of the Transient Voltage along the Line 

with a Capacitive Loading of 0.01 µF at t = 5 µs. 
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Fig. 12: Impact of the Non-uniformity of the Earth Conductivity on the Voltage Distribution at t = 

5 µs. 

 
The upper curve in Figure 12 shows the results 
for the above described non-uniform case. It 
indicates a receiving end voltage of about 
0.986 per unit. This should be compared with 
the lower case pertinent to the case of a 

uniform earth conductivity σ = 0.05(Ω.m)
-1

. It 
shows a load voltage of about 0.982 per unit. 
The average values of σ in both cases are 

0.05(Ω.m)
-1

. 
 
In principle, any other shape of non-uniformity 
can be similarly dealt with. Even abrupt 
changes in σ(x) can be easily expressed 
through the proper application of step 
functions.  
 
Effect of the Number of Spans 
Any number of span lengths can be handled by 
substituting the value of the number of line’s 
tower spans N in the Eqs. (2) thru (4). As an 
example, Figure 13 illustrates the response of 
the receiving end voltage for a line comprising 
seven span lengths (N = 7). The three 
capacitive loading conditions C = 0, C = 0.1 
and C = 0.2 nF previously considered in 
connection with Figure 8, are assumed. The 
expressions of the source voltage e(t) and E(s) 
are as given by Eqs. (11) and (12). A 
comparison of the plots of Figures 8 and 13 for 
N = 1 and N = 7 indicates that the receiving 
end voltage under no-load (C = 0 nF) reaches 
its final value much faster if N = 7. 
Furthermore, the voltage overshoots in the two 

other load capacitances are relatively higher 
for N = 7.  
Validation of The Suggested Procedure 
In order to check the validity of the suggested 
procedure, a special case study is selected for 
which an analytical solution is available. The 
receiving-end voltage and the source current of 
a lossless uniform transmission line using long 
line theory will be compared with those 
obtained from the developed Mathematica 
program using parametric functions. The 
results are depicted in Figure 14 for the single-
span, 312.2 m long, uniform line. Its travel 
time is τ = 1.041 µs. The conductor height is 
26.2 m and its conductor radius is 0.0254 m. 
The wire resistance rdc  and its shunt 
conductance g are neglected in this special 
case study. Moreover, an infinite soil 
conductivity σ is assumed so that the complex 
penetration depth will be zero. A double-
exponential source voltage of the following 
time waveform is applied:  
 
e(t) =  
1.034[E^(-59523.8 t)- E^(-1.176*10^7 t)] (15) 

 
Its Laplace transform is  

E(s) = 
1.21032×10

7

s2+1.18242×10
7
s+7.0028×10

11     (16) 

 
From line theory, the s-domain expressions of 
the voltage VRE developed at the open-
circuited receiving–end and the source current 
ISource  will be E(s)/coshτs and E(s) tanhτs/Zo , 
respectively [1]. Zo  denotes the line’s surge 



Journal of Power Electronics & Power Systems 

Volume 7, Issue 3 

ISSN: 2249-863X (Online), ISSN: 2321-4244 (Print) 

 

 JoPEPS (2017) 47-59 © STM Journals 2017. All Rights Reserved                                                             Page 57 

impedance √µ
o

ε0⁄  = 377Ω. As an example, 

the numerical Laplace inversion the voltage 
expression yielded the results in plot, (a) of 
Figure 14. It is in good agreement with the 
corresponding plot, (b) obtained using the 
suggested procedure. The line’s travel time τ 

can be easily recognized from the time delay 
of the receiving-end voltage with respect to the 
applied voltage, or half the time span between 
any two consecutive reflections of the voltage 
or current waves. 

 

 
Fig. 13: The Transient Response of the Receiving End Voltages for Three Capacitive Loading 

Conditions. Number of tower spans = 7. 

Lowest curve: Load capacitance = 0 nF, 

Middle curve: Load capacitance = 0.1 nF, 

Upper curve: Load capacitance = 0.2 nF. 
 

 
(a) Receiving-end voltage resulting from analytical solution 
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(b) Receiving-End Voltage Resulting from Suggested Procedure 

Fig. 14: Comparison of the Receiving-end Voltages Obtained using the Proposed Method and the 

known Analytical Solution for a Special Case Study. Time Range is: 0 ≤ t ≤ 5 µs. 

 

CONCLUSIONS  

1. A technique for analyzing the 
electromagnetic transients of overhead 
lines in the presence of conductors’ sag 
and lossy earth return is presented.  

2. A simple closed form equation expressing 
the conductor height as a function of the 
line’s longitudinal co-ordinate is derived. 
This facilitated the formulation of the two 
simultaneous differential equations 
governing the voltage and current 
distributions. 

3. Analytical Laplace-domain expressions for 
the transient voltage and current 
distributions in terms of the location along 
the line could be directly obtained using a 
Mathematica program. They were then 
numerically inverted into the time-domain 
using the Hosono algorithm.  

4. The results of applying the suggested 
method to several case studies are 
presented and discussed.  

5. The capability of handling situations 
involving soil parameters’ non-
uniformities, in the longitudinal direction, 
is pointed out.  

6. The effect of the line’s loading on its 
transient response is illustrated and 
discussed. 

7. The suggested procedure is validated by 
comparing the results with those of a 

certain case study with known analytical 
solutions using line theory. 
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