Regression and ANN Models in Predicting Tool Wear
Abstract
Keywords
Full Text:
PDFReferences
Palanisamy P, Shanmugasundaram S, Rajendran I. Tool wear prediction using regression and ANN
in milling. 2006.
Gouariz A, Martinez G, Terrazos G, Benardos P, Ratchev S. In process Tool wear prediction system
based on machine learning techniques and force analysis. Procedia CIRP. 2018; 77: 501–504.
Twardowski P, Pikula MW. Prediction of tool wear using ANN during turning of hardened steel.
Materials. 2019; 12(19): 3091.
Oraby SE. Tool life determination based on the measurement of wear and force ration variation. Int
J Mach Tools Manuf. 2004; 44(12–13): 1261–1269.
Palanisamy P, Shanmugasundaram S. Modeling of tool wear and surface roughness in hard turning
using regression and ANN. Int J Mach Mach Mater. 2008; 4(1): 76–94.
Baig RU, Javed S, Khaisar M, Shakoor M, Raja P. Development of an ANN model for prediction
of tool wear in turning EN9 and EN24 steel alloy. Adv Mech Eng. 2021; 13(6): 1–14.
Pikula MW, Czyryca AF, Twardowski P. Tool wear prediction based on ANN during aluminum
matrix composite milling. Sensors (Basel). 2020 Oct 13; 20(20): 5798.
Kalidass S, Palanisamy P, Muthukumaran V. Tool wear prediction using regression and ANN in
end milling of AISI 304 austentic stainless steel. Int J Eng Innov Technol. 2014; 1(2): 29–36.
Palanisamy P, Shanmugasundaram S, Rajendran I. Optimization of machining parameters using
genetic algorithm and experimental validation for end milling process. Int J Adv Manuf Technol.
; 32: 644–655.
Toh CK. Static and dynamic force analysis when high speed rough milling hardened steel. 2009.
Thinh HX. A study on tool wear in milling process. 2007.
Ezugwua EO, Fadarea DA, Bonneya J, Da Silvaa RB, Salesa WF. Modeling the correlation between
cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial
neural network. Int J Mach Tools Manuf. 2005; 45(12–13): 1375–1385.
Pang JS, Ansari MNM, Zaroog Omar S, Ali Moaz H, Sapuan SM. Taguchi design optimization of
machining parameters on the CNC end milling process of halloysite nanotube with aluminium
reinforced epoxy matrix (HNT/Al/Ep) hybrid composite. HBRC J. 2014; 10(2): 138–144.
Damir Grguruas, Matjaz Kern, Franci Pusavec. Suitability of the full body ceramic end milling
tools for high-speed machining of nickel-based alloy Inconel 718. Procedia CIRP. 2018; 77: 630–
Cho S, Asfour S, Onar A, Kaundinya N. Tool breakage detection using support vector machine
learning in a milling process. Int J Mach Tools Manuf. 2005; 45(3): 241–249.
Sarala Rubi C, Udaya Prakash J. Effect of Drilling Process Parameters on Surface Roughness of
LM6/B4C Composites. Int J Eng Adv Technol. 2019; 9(2): 3835–3838.
Richhetti A, Machado AR, Da Silva MB. Influence of the number of inserts for tool life evaluation
in face milling of steels. Int J Mach Tools Manuf. 2004; 44: 695–700.
ISO 8688-2: 1989. Tool life testing in milling, end milling.
Rahmath Ulla Baig, Syed Javed, Mohammed Khaisar, Mwafak Shakoor, Purushothaman Raja.
Development of an ANN model for prediction of tool wear in turning EN9 and EN24 steel alloy.
Adv Mech Eng. 2021; 13(6): 1–14.
Xu Chuangwen, Dou Jianming, Chai Yuzhen, Li Huaiyuan, Shi Zhicheng, Xu Jing. The
relationships between cutting parameters, tool wear, cutting force and vibration. Adv Mech Eng.
; 10(1): 1–14.
Zhe Wang, Lei Li. Optimization of process parameters for surface roughness and tool wear in
milling TC17 alloy using Taguchi with grey relational analysis. Adv Mech Eng. 2021; 13(2): 1–8.
Koshy P, Dumitrescu P, Ziada Y. Novel methods for rapid assessment of tool performance in
milling. Int J Mach Tools Manuf. 2004; 44(15): 1599–1605.
Refbacks
- There are currently no refbacks.