Open Access Open Access  Restricted Access Subscription or Fee Access

DC and RF Analysis on Specific Quantum-Well Heterostructures

Subhadeep Mukhopadhyay

Abstract


Polarization-graded AlGaN back-barrier nano-layer is introduced in high electron mobility transistor (HEMT) structure to have an improved drain current characteristics and better radio-frequency performance, using two-dimensional drift-diffusion simulation by SILVACO-ATLAS physical simulator. In this work, the AlGaN/AlN/GaN/AlGaN/GaN double heterojunction HEMT structure is optimised with graded back barrier layer to study the DC and RF performances. Investigation of this structure with graded back barrier layer is the novelty of this work. According to the effect of gate length on drain current, higher drain current corresponds to shorter gate length in both graded and non-graded HEMT structures. Variations in transconductance are investigated in both graded and non-graded HEMT structures. Formation of quantum wells due to conduction band discontinuity is directly demonstrated in both graded and non-graded HEMT structures using the physical simulator. The conduction band discontinuity is 2.38 eV for graded HEMT structures as higher than non-graded HEMT structures, resulting into better carrier confinement. According to the simulation results, radio-frequency performance is better in graded HEMT structures than non-graded HEMT structures.

Keywords


Nano-layer; Graded-polarization; Gate length; Quantum well; Drain current

Full Text:

PDF

References


M. Charfeddine, H. Belmabrouk, M.A. Zaidi, and H. Maaref, “2-D Theoretical Model for Current-Voltage Characteristics in AlGaN/GaN HEMTs”, Journal of Modern Physics 3, 881–886 (2012).

M.K. Chattopadhyay and S. Tokekar, “Thermal Model for DC Characteristics of AlGaN/GaN HEMTs including Self-Heating Effect and Non-Linear Polarization”, Microelectronics Journal 39, 1181–1188 (2008).

M.K. Chattopadhyay and S. Tokekar, “Temperature and Polarization dependent Polynomial based Non-Linear Analytical Model for Gate Capacitance of AlmGa1-mN/GaN MODFET”, Solid-State Electronics 50, 220–227 (2006).

M.K. Chattopadhyay and S. Tokekar, “Analytical Model for the Transconductance of Microwave AlmGa1–mN/GaN HEMTs including Nonlinear Macroscopic Polarization and Parasitic MESFET Conduction”, Microwave and Optical Technology Letters 49, 382–389 (2007).

M. Korwal, S. Haldar, M. Gupta and R.S. Gupta, “Parasitic Resistance and Polarization-Dependent Polynomial-Based Non-Linear Analytical Charge-Control Model for AlGaN/GaN MODFET for Microwave Frequency Applications”, Microwave and Optical Technology Letters 38, 371–378 (2003).

S. Khandelwal, N. Goyal and T.A. Fjeldly, “A Physics-Based Analytical Model for 2DEG Charge Density in AlGaN/GaN HEMT Devices”, IEEE Transactions on Electron Devices 58, 3622–3625 (2011).

S. Khandelwal, Y.S. Chauhan and T.A. Fjeldly, “Analytical Modeling of Surface-Potential and Intrinsic Charges in AlGaN/GaN HEMT Devices”, IEEE Transactions on Electron Devices 59, 2856–2860 (2012).

S. Khandelwal, C. Yadav, S. Agnihotri, Y.S. Chauhan, A. Curutchet, T. Zimmer, J.C.D. Jaeger, N. Defrance and T.A. Fjeldly, “Robust Surface-Potential-Based Compact Model for GaN HEMT IC Design”, IEEE Transactions on Electron Devices 60, 3216–3222 (2013).

S. Khandelwal and T. A. Fjeldly, “A Physics based Compact Model of I-V and C-V Characteristics in AlGaN/GaN HEMT Devices”, Solid-State Electronics 76, 60–66 (2012).

S. Khandelwal, N. Goyal and T.A. Fjeldly, “A Precise Physics-Based Compact Model for 2-DEG Charge Density in GaAs HEMTs applicable in all Regions of Device Operation”, Solid-State Electronics 79, 22–25 (2013).

S. Kalita and S. Mukhopadhyay, “Effect of Gate Length on the Electrical Characteristics of Nanoelectronic AlGaN/GaN High Electron Mobility Transistors to Fabricate the Biomedical Sensors in Nanoelectronics”, Journal of Nanoelectronics and Optoelectronics 13, 1123–1127 (2018).

U.K. Mishra, P. Parikh and Y.F. Wu, “AlGaN/GaN HEMTs-An Overview of Device Operation and Applications”, Proc. IEEE 90, 1022–1031 (2002).

U.K. Mishra, L. Shen, T.E. Kazior and Y.F. Wu, “GaN-Based RF Power Devices and Amplifiers”, Proc. IEEE 96, 287–305 (2008).

E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean, J. Massies, C. Skierbiszewski and T. Suski, “High Electron Mobility in AlGaN/GaN Heterostructures Grown on Bulk GaN Substrates”, Appl. Phys. Lett. 77, 2551–2553 (2000).

D. Visalli, M.V. Hove, J. Derluyn, S. Degroote, M. Leys, K. Cheng, M. Germain and G. Borghs, “AlGaN/GaN/AlGaN Double Heterostructures on Silicon Substrates for High Breakdown Voltage Field-Effect Transistors with Low On-Resistance”, Jpn. J. Appl. Phys. 48, 04C101 (2009).

M. Kuzuhara and H. Tokuda, “Low-Loss and High-Voltage III-Nitride Transistors for Power Switching Applications”, IEEE Transactions on Electron Devices 62, 405–413 (2015).

J. Kuzmik, “Power Electronics on InAlN/(In) GaN: Prospect for a Record Performance”, IEEE Electron Devices Lett. 22, 510–512 (2001).

N.M. Shrestha, Y. Li and E.Y. Chang, “Simulation Study on Electrical Characteristic of AlGaN/GaN High Electron Mobility Transistors with AlN Spacer Layer”, Jpn. J. Appl. Phys. 53, 04EF08 (2014).

A. Teke, S. Gokden, R. Tulek, J. H. Leach, Q. Fan, J. Xie, U. Ozgur, H. Morkoc, S.B. Lisesivdin and E. Ozbay, “The Effect of AlN Interlayer Thicknesses on Scattering Processes in Lattice-Matched AlInN/GaN Two-Dimensional Electron Gas Heterostructures”, New J. Phys. 11, 063031 (2009).

C.H. Morko, R. Cingolani and B. Gil, “Polarization Effects in Nitride Semiconductor Device Structures and Performance of Modulation Doped Field Effect Transistors”, Solid-State Electron. 43, 1909–1927 (1999).

O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov and L. Wittmer, “Two-Dimensional Electron Gases induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures”, J. Appl. Phys. 87, 3222–3233 (1999).

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini and V. Tilak, “Pyroelectric Properties of Al (In) GaN/GaN Hetero- and Quantum Well Structures”, J. Phys. Condens. Matter 14, 3399–3434 (2002).

R.R. Pela, C. Caetano, L.G. Ferreira, J. Furthmuller and L.K. Teles, “Accurate Band Gaps of AlGaN, InGaN, and AlInN Alloys Calculations based on LDA-1/2 Approach”, Appl. Phys. Lett. 98, 151907 (2011).

A. Dutta, S. Kalita and S. Mukhopadhyay, “Studies on the Electrical Characteristics of Single-Heterojunction GaN based HEMTs with AlGaN Nano-Layer of 21 nm”, International Journal of Applied Nanotechnology 5, 26–38 (2019).

S. Mukhopadhyay, “Report on the Novel Electrical Characteristics of Microelectronic High Electron Mobility Transistors to Establish a Low-Cost Microelectronics Laboratory in the National Institute of Technology Arunachal Pradesh”, Journal of Semiconductor Devices and Circuits 4, 6–28 (2017).

K. Ahmeda, B. Ubochi, B. Benbakhti, S.J. Duffy, A. Soltani, W.D. Zhang, K. Kalna, “Role of Self-Heating and Polarization in AlGaN/GaN-Based Heterostructures”, IEEE Access 5, 20946–20952 (2017).

B. Ubochi, K. Ahmeda, K. Kalna, “Buffer Trap Related Knee Walkout and the Effects of Self-Heating in AlGaN/GaN HEMTs”, ECS Journal of Solid State Science and Technology 6, S3005–S3009 (2017).

B. Ubochi, S. Faramehr, K. Ahmeda, P. Igić, K. Kalna, “Operational frequency degradation induced trapping in scaled GaN HEMTs”, Microelectronics Reliability 71, 35–40 (2017).

S. Sinha, K E. Goodson, “Review: Multiscale Thermal Modeling in Nanoelectronics”, International Journal for Multiscale Computational Engineering 3, 107–133 (2005).

P. Das, D. Biswas, “Gate Leakage Current Reduction with Advancement of Graded Barrier AlGaN/GaN HEMT”, J. Nano- Electron. Phys. 3, 972–978 (2011).

S. Rahman, N.A.F. Othman, S.W.M. Hatta, N. Soin, “Optimization of Graded AlInN/AlN/GaN HEMT Device Performance Based on Quaternary Back Barrier for High Power Application”, ECS Journal of Solid State Science and Technology 6, P805–P812 (2017).

S.H. Sohel, A. Xie, E. Beam, H. Xue, T. Razzak, S. Bajaj, Y. Cao, C. Lee, W. Lu, S. Rajan, “Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications”, IEEE Electron Device Letters 40, 522–525 (2019).

J.S. Moon, B. Grabar, M. Antcliffe, J. Wong, C. Dao, P. Chen, E. Arkun, I. Khalaf, A. Corrion, J. Chappell, N. Venkatesan, P. Fay, “High-speed Graded-channel GaN HEMTs with Linearity and Efficiency”, 2020 IEEE/MTT-S International Microwave Symposium, USA, 2020, Pages 573–575.

S. Bajaj, Z. Yang, F. Akyol, P.S. Park, Y. Zhang, A.L. Price, S. Krishnamoorthy, D.J. Meyer, S. Rajan, “Graded AlGaN Channel Transistors for Improved Current and Power Gain Linearity”, IEEE Transactions on Electron Devices 64, 3114–3119 (2017).

N.A.F. Othman, S. Rahman, S.F.W.M. Hatta, N. Soin, B. Benbakhti, S. Duffy, “Design optimization of the graded AlGaN/GaN HEMT device performance based on material and physical dimensions” Microelectronics International 36, 73–82 (2019).

X. Wang, G. Hu, Z. Ma, J. Ran, C. Wang, H. Xiao, J. Tang, J. Li, J. Wang, Y. Zeng, J. Li, Z. Wang, “AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD”, J. Cryst. Growth 298, 835–839 (2007).

D.K. Panda, T.R. Lenka, “Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications”, Journal of Semiconductors 38, 64002 (2017).

E.N. Ganesh, “Simulation of GaAs MESFET and HEMT Devices for RF Applications”, International Journal of Emerging Trends & Technology in Computer Science 2, 123-128 (2013).

B. Hou, L. Yang, M. Mi, M. Zhang, C. Yi, M. Wu, Q. Zhu, Y. Lu, J. Zhu, X. Zhou, L. Lv, X. Ma, Y. Hao, “High Linearity and High Power Performance with Barrier Layer of Sandwich Structure and Al0.5GaN Back Barrier for X-Band Application”, Journal of Physics D: Applied Physics 53, 145102 (2020).

S. Rabbaa, J. Stiens, “Charge Density and Plasmon Modes in a Triangular Quantum Well Model for Doped and Undoped Gated AlGaN/GaN HEMTs”, Journal of Physics D: Applied Physics 44, 325103 (2011).

S. Rabbaa, J. Stiens, “Theoretical Triangular Quantum Well Model for AlGaN/GaN HEMT structure Used as Polar Liquid Sensor”, Proceedings of IEEE-ICSE2012, Kuala Lumpur, Malaysia, 2012, Pages 374–377.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Semiconductor Devices and Circuits

Publisher: STM Journals, an imprint of CELNET (Consortium e-Learning Network Pvt. Ltd.)

Address: A-118, 1st Floor, Sector-63, Noida, Uttar Pradesh-201301, India

Phone no.: 0120-478-1215/ Email: [email protected]