Open Access Open Access  Restricted Access Subscription or Fee Access

Modelling and Simulation of a Combined System Geothermal Binary Plant and Parabolic Solar Concentrator

Carlos Armenta-Deu

Abstract


The present work describes a new prototype that uses the concentrated solar radiation to improve the performance of geothermal power plants. Current methods of heat recovering have been used to reduce the amount of fossil fuel used to produce vapor or to increase gas pressure and temperature, depending on the type of system; however, concentrated solar energy is an unknown resource that may help to increase vapor production at a relatively low cost. A conscientious review of the many geothermal power plants has shown that none of them is using a system like the one proposed in this paper, a clear sign of the novelty of the prototype. To this goal, a combined system, geothermal binary plant and parabolic solar concentrator, has been modelled and simulated for different evaporation and condensation temperatures. Parabolic solar concentrator has been used to increase water temperature. The simulation process covers a wide range of condensation temperature, from 80º C to 130º C, and a limited range for the evaporation temperature, between 160º C and 180º C. The simulation shows that the energy generation increases linearly with the temperature gap between evaporation and condensation, obtaining the best performance for an evaporation temperature of 175º C. The simulation has revealed that the new design provides extra power in close agreement with experimental tests. Prediction of power increase factor is 2.188. Net power represents, on average, the 88.5% of the generated power according to the simulation results. Power ratio of net to generated power is almost constant below a temperature gap threshold, but increases beyond this threshold following a second degree polynomial function which depends on the evaporation temperature.

Keywords


Solar geothermal power plant. Power enhancement

Full Text:

PDF

References


2015 Annual U.S. & Global Geothermal - Power Production Report (2015) Asociación de

Energía Geotérmica. [Online] Available from http://large.stanford.edu/courses/2019/ph241/

kisunas2/docs/gea-feb15.pdf

Diego Moya, Clay Aldás and Prasad Kaparaju, Geothermal energy: Power plant technology and

direct heat applications. Renewable and Sustainable Energy Reviews. 2018;94:889-901.

Ronald DiPippo (2012) Geothermal Power Plants: Principles, Applications, Case Studies and

Environmental Impact. 3rd ed. Butterworth-Heinemann. Elsevier. 24th April 2012.

Carlo Minini, Binary Geothermal Power Plants, Sustainable Energy Development, 1st ed. CRC

Press 1 September 2018.

Tomarov, A.A, Shipkov , Modern geothermal power: Binary cycle geothermal power plants. G.V.. Thermal Engineering. 2017; 64( 4): p.243-250. 6. Lund J, et al. Geothermal (ground-source) heat pumps: a world overview. Geo-Heat Center Quarterly Bulletin.2004;25(3):11-19 7. Erkan K, Holdmann G, Benoit W,et al. Understanding the Chena Hot Springs, Alaska, geothermal system using temperature and pressure data from exploration boreholes. Geothermics. 2008;37(6):565-585. 8. Nicholson K. Geothermal fluids: chemistry and exploration techniques. Springer Science & Business Media; 2012 Dec 6. 9. Giulio Ottonello. Principles of Geochemistry. Columbia University Press. 7 March 2000.

Salvador Handal (2014) Influencia de la composición química de agua geotérmica en la eficiencia global de un concentrador solar parabólico (Influence of chemical composition in geothermal water on the global performance of parabolic solar concentrator, Master Thesis, UES, El Salvador

Bernhard Platzer, Axel Polt and Gerd Maurer.Thermophysical Properties of Refrigerants.ed 1. Springer; Verlag Berlin Heidelberg;1990 12. Soltani M, Nabat MH, Razmi AR,. A comparative study between ORC and Kalina based waste heat recovery cycles applied to a green compressed air energy storage (CAES) system. Energy Conversion and Management. 2020;222:113203.

Ronald DiPippo Ph.D., in Geothermal Power Plants.(Fourth Edition) Magmamax Binary Power Plant, East Mesa, Imperial Valley, California, USA ;2016 14. Bhatia SC, editor. Advanced renewable energy systems,(Part 1 and 2). CRC Press; 2014 Apr 14.

Lenzi, Alessandro & Bonciani, Roberto & sabatelli, fabio & Luperini, Fabio. (2013). Geothermal power plants in Italy: increasing the environmental compliance. Conference paper, Conference: European Geothermal Congress at Pisa, Italy, January 2013

Árni Ragnarsson, Benedikt Steingrímsson and Sverrir Thorhallsson (2018) Geothermal Country Update for Iceland. Proceedings, 7th African Rift Geothermal Conference Kigali, Rwanda 31st October – 2nd November 17. Bryan Vermes. (2014,October,16) [Online] Availabale https://sites.suffolk.edu/rebeccaeshoo/ 2014/10/15/geothermal-energy-in-iceland/ 18. Weber J, Born H, Moeck I. Geothermal Energy Use, Country Update for Germany 2016-2018. InProceedings of the European Geothermal Congress 2019 Jun.

Kewen Li, Changwei Liu, Shanshan Jiang, Et al. Review on hybrid geothermal and solar power systems, Journal of Cleaner Production.2020 ;250:119481.

Song Anda, Zhua Jialing , Peipei Zhang, et al. (2019) Experimental Research on Solar and Geothermal Energy Coupling Power Generation System, Energy Procedia,.2019;158:Pp. 5982-5987

Ayhan Atiz, Hatice Karakilcik, Mustafa Erden et al. Investigation energy, exergy and electricity production performance of an integrated system based on a low-temperature geothermal resource and solar energy, Energy Conversion and Management. 2019;195:, Pp. 798-809.

Tailu Li, Xiaoxiao Hu, Jianqiang Wang, et al. Performance improvement of two-stage serial organic Rankine cycle (TSORC) driven by dual-level heat sources of geothermal energy coupled with solar energy. Geothermics. 2018; 76:Pp. 261-270.

Shahid Islam and Ibrahim Dincerac. Energy and exergy analyses of a new geothermal–solar energy based system, Solar Energy. 2016 ;134:Pp. 95-106.

Alberto Carotenuto, Rafal Damian Figaj and Laura Vanoli.A novel solar-geothermal district heating, cooling and domestic hot water system: Dynamic simulation and energy-economic analysis. Energy. 2017; 141: Pp. 2652-2669.

Hossein Nami and Amjad Anvari-Moghaddam. Geothermal driven micro-CCHP for domestic application – Exergy, economic and sustainability analysis, Energy, 2020;207: 118195.

G.V.nTomarov, A.A. Shipkov and E.V. Sorokina. Investigation of a binary power plant using different single-component working fluids, International Journal of Hydrogen Energy. 2016; (48):Pp. 23183-23187.

Zeyghami M. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle. Energy. 2015;88:765-774.

Pardeep Garg, Pramod Kumar, Kandadai Srinivasan. Evaluation of isopentane, R-245fa and their mixtures as working fluids for organic Rankine cycles. Applied Thermal Engineering. 2013; 51(1–2): Pp. 292-300.

Van der Sluis, L.; Schavemaker, P. (2008,04). Electrical Power System Essentials. John Wiley And Sons Ltd.[Online]Available from ISBN 978-0470-51027-8

http://www.ethermo.us/ShowDetail2597.htm

Michael DiGrazia ((ReflecTech, Inc. ) and Gary Jorgensen (National Renewable Energy Laboratory, NREL) (2010) Reflectech Mirror Film: Design Flexibility And Durability In Reflecting Solar Applications, Proceedings of Ameriican Solar Energy Society, http://proceedings.ases.org/wp-content/uploads/2014/02/2010-217small.pdf

32. Eduardo Zarza-Moya (2004) Generación Directa de Vapor con Colectores Solares Cilindro Parabólicos (Direct Steam Generation in Parabolic Solar Thru Concentrators), Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT (Centre for Energy, Environment and Technology Research), Ed. CIEMAT, isbn: 84-7834-472-1. 33. Salomoni VA, Majorana CE, Giannuzzi GM, et al.New trends in designing parabolic trough solar concentrators and heat storage concrete Systems in Solar Power Plants. Solar Energy. 2010:268-92.

Torres y Alvarenga (2013) Desarrollo de una técnica óptica basada en trazado de ra4os para la determinación del ángulo de aceptancia solar en concentradores solares. Tesis de Diplomatura. Un. El Salvador, San Salvador

E.A. Cárcamo and A.J. Rivera (2016) Diseño conceptual de un sistema híbrido integrado de simple flash-binario para una planta geotérmica. Tesis de Diplomatura. Diplomatura en Geotermia para América Latina. Univ. El Salvador, San Salvador




DOI: https://doi.org/10.37591/jotea.v8i1.4927

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Journal of Thermal Engineering and Applications