Recent developments in Nano technology applications in direct absorbing solar collectors: A Review
Abstract
Keywords
Full Text:
PDFReferences
Goel, N., Taylor, R. A., & Otanicar, T. (2019). A Review of Nanofluid-Based Direct Absorption Solar Collectors: Design Considerations and Experiments with Hybrid PV/Thermal and Direct Steam Generation Collectors. Renewable Energy. doi:10.1016/j.renene.2019.06.097
Raj, P., & Subudhi, S. (2018). A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renewable and Sustainable Energy Reviews, 84, 54–74. doi:10.1016/j.rser.2017.10.012
Minardi, J. E., & Chuang, H. N. (1975). Performance of a “black” liquid flat-plate solar collector. Solar Energy, 17(3), 179–183. doi:10.1016/0038-092x(75)90057-2
S.K. Das, SU Choi, W yu, T pradeep, Nano fluids: Science and technology. Wiley Publishers, ISBN: 987-0-470-07473-2.
Chen, M., He, Y., Zhu, J., & Wen, D. (2016). Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Applied Energy, 181, 65–74. doi:10.1016/j.apenergy.2016.08.054
Gorji, T. B., & Ranjbar, A. A. (2016). A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids. Solar Energy, 135, 493–505. doi:10.1016/j.solener.2016.06.023
Jeon, J., Park, S., & Lee, B. J. (2016). Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy, 132, 247–256. doi:10.1016/j.solener.2016.03.022
Zeng, J., Xuan, Y., & Duan, H. (2016). Tin-silica-silver composite nanoparticles for medium-to-high temperature volumetric absorption solar collectors. Solar Energy Materials and Solar Cells, 157, 930–936. doi:10.1016/j.solmat.2016.08.012
Vakili, M., Hosseinalipour, S. M., Delfani, S., Khosrojerdi, S., & Karami, M. (2016). Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. Solar Energy, 131, 119–130. doi:10.1016/j.solener.2016.02.034
Bortolato, M., Dugaria, S., Agresti, F., Barison, S., Fedele, L., Sani, E., & Del Col, D. (2017). Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector. Energy Conversion and Management, 150, 693–703. doi:10.1016/j.enconman.2017.08.044
Chen, L., Liu, J., Fang, X., & Zhang, Z. (2017). Reduced graphene oxide dispersed nanofluids with improved photo-thermal conversion performance for direct absorption solar collectors. Solar Energy Materials and Solar Cells, 163, 125–133. doi:10.1016/j.solmat.2017.01.024
Menbari, A., Alemrajabi, A. A., & Rezaei, A. (2017). Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids. Experimental Thermal and Fluid Science, 80, 218–227. doi:10.1016/j.expthermflusci.2016.08.023
Hatami, M., Mosayebidorcheh, S., & Jing, D. (2017). Thermal performance evaluation of alumina-water nanofluid in an inclined direct absorption solar collector (IDASC) using numerical method. Journal of Molecular Liquids, 231, 632–639. doi:10.1016/j.molliq.2017.02.045
Kasaeian, A., Daneshazarian, R., Rezaei, R., Pourfayaz, F., & Kasaeian, G. (2017). Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. Journal of Cleaner Production, 158, 276–284. doi:10.1016/j.jclepro.2017.04.131
Rose, B. A. J., Singh, H., Verma, N., Tassou, S., Suresh, S., Anantharaman, N. Maguire, P. (2017). Investigations into nanofluids as direct solar radiation collectors. Solar Energy, 147, 426–431. doi:10.1016/j.solener.2017.03.063
Fan, D., Li, Q., Chen, W., & Zeng, J. (2017). Graphene nanofluids containing core-shell nanoparticles with plasmon resonance effect enhanced solar energy absorption. Solar Energy, 158, 1–8. doi:10.1016/j.solener.2017.09.031
Karami, M., Bozorgi, M., Delfani, S., & Akhavan-Behabadi, M. A. (2018). Empirical correlations for heat transfer in a silver nanofluid-based direct absorption solar collector. Sustainable Energy Technologies and Assessments, 28, 14–21. doi:10.1016/j.seta.2018.05.001
Sharaf, O. Z., Al-Khateeb, A. N., Kyritsis, D. C., & Abu-Nada, E. (2018). Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions. Applied Energy, 231, 1132–1145. doi:10.1016/j.apenergy.2018.09.191
Bhalla, V., Khullar, V., & Tyagi, H. (2018). Experimental investigation of photo-thermal analysis of blended nanoparticles (Al 2 O 3 /Co 3 O 4 ) for direct absorption solar thermal collector. Renewable Energy, 123, 616–626. doi:10.1016/j.renene.2018.01.042
Alami, A. H., & Aokal, K. (2018). Enhancement of spectral absorption of solar thermal collectors by bulk graphene addition via high-pressure graphite blasting. Energy Conversion and Management, 156, 757–764. doi:10.1016/j.enconman.2017.11.040
Mallah, A. R., Kazi, S. N., Zubir, M. N. M., & Badarudin, A. (2018). Blended morphologies of plasmonic nanofluids for direct absorption applications. Applied Energy, 229, 505–521. doi:10.1016/j.apenergy.2018.07.113
Sheikh, N. A., Ali, F., Khan, I., & Gohar, M. (2018). A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model. Chaos, Solitons & Fractals, 115, 135–142. doi:10.1016/j.chaos.2018.08.020
Cooper, T. A., Zandavi, S. H., Ni, G. W., Tsurimaki, Y., Huang, Y., Boriskina, S. V., & Chen, G. (2018). Contactless steam generation and superheating under one sun illumination. Nature Communications, 9(1). doi:10.1038/s41467-018-07494-2
Weinstein, L. A., McEnaney, K., Strobach, E., Yang, S., Bhatia, B., Zhao, L. Chen, G. (2018). A Hybrid Electric and Thermal Solar Receiver. Joule, 2(5), 962–975. doi:10.1016/j.joule.2018.02.009
Jing, D., & Song, D. (2017). Optical properties of nanofluids considering particle size distribution: Experimental and theoretical investigations. Renewable and Sustainable Energy Reviews, 78, 452–465. doi:10.1016/j.rser.2017.04.084
Wang, Z., Qu, J., Zhang, R., Han, X., & Wu, J. (2019). Photo-thermal performance evaluation on MWCNTs-dispersed microencapsulated PCM slurries for direct absorption solar collectors. Journal of Energy Storage, 26, 100793. doi:10.1016/j.est.2019.100793
Ma, F., & Zhang, P. (2019). Performance investigation of the direct absorption solar collector based on the phase change slurry. Applied Thermal Engineering, 114244. doi:10.1016/j.applthermaleng.2019.114244
Shahram Delfani, Mostafa Esmaeili, Maryam Karami (2019), Application of artificial neural network for performance prediction of a nanofluid-based direct absorption solar collector, Sustainable Energy Technologies and Assessments, 36 (2019) 100559.
Mallah, A. R., Mohd Zubir, M. N., Alawi, O. A., Salim Newaz, K. M., & Mohamad Badry, A. B. (2019). Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: Fundamentals and applications. Solar Energy Materials and Solar Cells, 201, 110084. doi:10.1016/j.solmat.2019.110084
Sharaf, O. Z., Rizk, N., Joshi, C. P., Abi Jaoudé, M., Al-Khateeb, A. N., Kyritsis, D. C.Martin, M. N. (2019). Ultrastable plasmonic nanofluids in optimized direct absorption solar collectors. Energy Conversion and Management, 199, 112010. doi:10.1016/j.enconman.2019.112010
Hazra, S. K., Ghosh, S., & Nandi, T. K. (2019). Photo-thermal conversion characteristics of carbon black-ethylene glycol nanofluids for applications in direct absorption solar collectors. Applied Thermal Engineering, 163, 114402. doi:10.1016/j.applthermaleng.2019.114402
Balakin, B. V., Zhdaneev, O. V., Kosinska, A., & Kutsenko, K. V. (2018). Direct absorption solar collector with magnetic nanofluid: CFD model and parametric analysis. Renewable Energy. doi:10.1016/j.renene.2018.12.095
Xu, X., Xu, C., Liu, J., Fang, X., & Zhang, Z. (2019). A direct absorption solar collector based on a water-ethylene glycol based nanofluid with anti-freeze property and excellent dispersion stability. Renewable Energy, 133, 760–769. doi:10.1016/j.renene.2018.10.073
Mahdi Tafarroj, M., Daneshazarian, R., & Kasaeian, A. (2018). CFD Modeling and Predicting the Performance of Direct Absorption of Nanofluids in Trough Collector. Applied Thermal Engineering. doi:10.1016/j.applthermaleng.2018.11.020
H. Bashirpour Bonab, N. Javani, Investigation and optimization of solar volumetric absorption systems using Nanoparticles, Solar Energy Materials and Solar Cells 194 (2019) 229–234
Behura, A. K., & Gupta, H. K. (2020). Efficient Direct Absorption Solar Collector Using Nanomaterial Suspended Heat Transfer Fluid. Materials Today: Proceedings, 22, 1664–1668. doi:10.1016/j.matpr.2020.02.183
Simonetti, M., Restagno, F., Sani, E., & Noussan, M. (2020). Numerical investigation of direct absorption solar collectors (DASC), based on carbon-nanohorn nanofluids, for low temperature applications. Solar Energy, 195, 166–175. doi:10.1016/j.solener.2019.11.044
Sreekumar, S., Joseph, A., Sujith Kumar, C. S., & Thomas, S. (2019). Investigation on influence of antimony tin oxide/silver nanofluid on direct absorption parabolic solar collector. Journal of Cleaner Production, 119378. doi:10.1016/j.jclepro.2019.119378
Wang, K., He, Y., Kan, A., Yu, W., Wang, L., Wang, D., She, X. (2020). Enhancement of therminol-based nanofluids with reverse-irradiation for medium-temperature direct absorption solar collection. Materials Today Energy, 100480. doi:10.1016/j.mtener.2020.100480
Huang, J., Chen, Z., Du, Z., Xu, X., Zhang, Z., & Fang, X. (2019). A highly stable hydroxylated graphene/ethylene glycol-water nanofluid with excellent extinction property at a low loading for direct absorption solar collectors. Thermochimica Acta, 178487. doi:10.1016/j.tca.2019.178487
Hamza Babar, Hafiz Muhammad Ali, “Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges, Journal of Molecular Liquids 281 (2019) 598–633
Aberoumand, S., Jafarimoghaddam, A., Moravej, M., Aberoumand, H., & Javaherdeh, K. (2016). Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Applied Thermal Engineering, 101, 362–372. doi:10.1016/j.applthermaleng.2016.01.148
Dardan, E., Afrand, M., & Meghdadi Isfahani, A. H. (2016). Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Applied Thermal Engineering, 109, 524–534. doi:10.1016/j.applthermaleng.2016.08.103
Asadi, A., Asadi, M., Rezaei, M., Siahmargoi, M., & Asadi, F. (2016). The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: An experimental study. International Communications in Heat and Mass Transfer, 78, 48–53. doi:10.1016/j.icheatmasstransfer.2016.08.021
Hemmat Esfe, M., Afrand, M., Yan, W.-M., Yarmand, H., Toghraie, D., & Dahari, M. (2016). Effects of temperature and concentration on rheological behavior of MWCNTs/SiO 2 (20–80)-SAE40 hybrid nano-lubricant. International Communications in Heat and Mass Transfer, 76, 133–138. doi:10.1016/j.icheatmasstransfer.2016.05.015
Afrand, M., Nazari Najafabadi, K., & Akbari, M. (2016). Effects of temperature and solid volume fraction on viscosity of SiO 2 -MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Applied Thermal Engineering, 102, 45-54. doi:10.1016/j.applthermaleng.2016.04.002
Li, X., Zou, C., Zhou, L., & Qi, A. (2016). Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications. International Journal of Heat and Mass Transfer, 97, 631–637. doi:10.1016/j.ijheatmasstransfer.2016.02.056
Asadi, M., & Asadi, A. (2016). Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: An experimental investigation and new correlation in different temperatures and solid concentrations. International Communications in Heat and Mass Transfer, 76, 41–45. doi:10.1016/j.icheatmasstransfer.2016.05.019
Anoop, K., Sadr, R., Yrac, R., & Amani, M. (2016). High-pressure rheology of alumina-silicone oil nanofluids. Powder Technology, 301, 1025–1031. doi:10.1016/j.powtec.2016.07.040
Colangelo, G., Favale, E., Miglietta, P., Milanese, M., & de Risi, A. (2016). Thermal conductivity, viscosity and stability of Al 2 O 3 -diathermic oil nanofluids for solar energy systems. Energy, 95, 124–136. doi:10.1016/j.energy.2015.11.032
Aberoumand, S., & Jafarimoghaddam, A. (2017). Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 71, 315–322. doi:10.1016/j.jtice.2016.12.035
Hemmat Esfe, M., Afrand, M., Rostamian, S. H., & Toghraie, D. (2017). Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Experimental Thermal and Fluid Science, 80, 384–390. doi:10.1016/j.expthermflusci.2016.07.011
Li, W., Zou, C., & Li, X. (2017). Thermo-physical properties of waste cooking oil-based nanofluid Applied Thermal Engineering, 112, 784–792. doi:10.1016/j.applthermaleng.2016.10.136
Ahmadi Nadooshan, A., Hemmat Esfe, M., & Afrand, M. (2017). Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Physical E: Low-Dimensional Systems and Nanostructures, 92, 47 54. doi:10.1016/j.physe.2017.05.011
Hemmat Esfe, M., Saedodin, S., Rejvani, M., & Shahram, J. (2017). Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications. Physica E: Low-Dimensional Systems and Nanostructures, 90, 194–203. doi:10.1016/j.physe.2017.02.015
Moghaddam, M. A., & Motahari, K. (2017). Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT-CuO (30–70)/SAE40 hybrid nano-lubricant. Applied Thermal Engineering, 123, 1419–1433. doi:10.1016/j.applthermaleng.2017.05.200
Hemmat Esfe, M., Karimpour, R., Abbasian Arani, A. A., & Shahram, J. (2017). Experimental investigation on non-Newtonian behavior of Al 2 O 3 -MWCNT/5W50 hybrid nano-lubricant affected by alterations of temperature, concentration and shear rate for engine applications. International Communications in Heat and Mass Transfer, 82, 97 102. doi:10.1016/j.icheatmasstransfer.2017.02.006
Asadi, A. (2018). A guideline towards easing the decision-making process in selecting an effective nanofluid as a heat transfer fluid. Energy Conversion and Management, 175, 1–10. doi:10.1016/j.enconman.2018.08.101
Asadi, A., & Pourfattah, F. (2018). Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technology. doi:10.1016/j.powtec.2018.11.023
Devendiran, D. K., & Amirtham, V. A. (2016). A review on preparation, characterization, properties and applications of nanofluids. Renewable and Sustainable Energy Reviews, 60, 21–40. doi:10.1016/j.rser.2016.01.055
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Journal of Thermal Engineering and Applications