Open Access Open Access  Restricted Access Subscription or Fee Access

Aluminum Oxide Nanofluids Thermal Conductivity Enhancement Analysis: A Review

Hamidreza Ghasemi Bahraseman, Taha Ghasemi Bahraseman, Hamidreza Nouri, Chi May Bahraseman, Patricia Petel, Mong Lam, Justin Skolek, Morteza Mohssenzadeh

Abstract


Aluminum oxide nanofluids are enhanced heat transfer fluids that utilize the thermal conductivity of aluminum oxide (Al2O3) nanoparticles suspended within a base fluid. As technology advances, more efficient high heat flux solutions are required to manage the higher concentration of power in smaller designs.  In this review paper, data from multiple experiments pertaining to the thermal conductivity of Al2O3 nanofluids will be presented.  Information is compiled from peer reviewed and published scientific journals.  The experimental method will be explored; outlining the preparation of samples and measurement techniques.  Data and conclusions will be reviewed from experiments designed to test the dependency of thermal conductivity on multiple variables, such as size, concentration, and temperature. Findings spanning 20 years of experimentation will be evaluated and represented graphically. Furthermore, possible applications for alumina-nanofluid within consumer and industrial contexts will be discussed.


Keywords


aluminum oxide nanofluid, alumina, thermal conductivity, stability, base fluid.

Full Text:

PDF

References


Angayarkanni, S. A., & Philip, J. (2014). Effect of nanoparticles aggregation on thermal and electrical conductivities of nanofluids. Journal of Nanofluids, 3(1), 17-25.

AZoNano, W. B. (2016, December 01). Aluminium/Aluminum Nanoparticles - Properties, Applications. Retrieved from https://www.azonano.com/article.aspx?ArticleID=3257

Beck, M. P., Yuan, Y., Warrier, P., & Teja, A. S. (2009). The effect of particle size on the thermal conductivity of alumina nanofluids. Journal of Nanoparticle Research, 11(5), 1129-1136.

Beck, M. P., Yuan, Y., Warrier, P., & Teja, A. S. (2010). The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol water mixtures. Journal of Nanoparticle research, 12(4), 1469-1477.

Buonomo, B., Manca, O., Marinelli, L., & Nardini, S. (2015). Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Applied Thermal Engineering, 91, 181-190.

Challoner, A. R., & Powell, R. W. (1956). Thermal conductivities of liquids: new determinations for seven liquids and appraisal of existing values. Proc. R. Soc. Lond. A, 238(1212), 90-106.

Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2 O 3) thermal conductivity enhancement. Applied Physics Letters, 87(15), 153107.

Choudhary, R., Khurana, D., Kumar, A., & Subudhi, S. (2017). Stability analysis of Al2O3 /water nanofluids. Journal of Experimental Nanoscience, 12(1), 140-151.

Czarnetzki, W., & Roetzel, W. (1995). Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. International Journal of Thermophysics, 16(2), 413-422.

Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125(4), 567-574.

Goodarzi, M., Kherbeet, A. S., Afrand, M., Sadeghinezhad, E., Mehrali, M., Zahedi, P., ... & Dahari, M. (2016). Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. International Communications in Heat and Mass Transfer, 76, 16-23.

Faghri, A., Zhang, Y., & Howell, J. R. (2010). Advanced heat and mass transfer. Global Digital Press.

Fordham-Cooper, W. (1998). Electrical safety engineering. Elsevier.

Gustafsson, S. E., Karawacki, E., & Khan, M. N. (1979). Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids. Journal of Physics D: Applied Physics, 12(9), 1411.

Horrocks, J. K., & McLaughlin, E. (1963). Non-steady-state measurements of the thermal conductivities of liquid polyphenyls. Proc. R. Soc. Lond. A, 273(1353), 259-274

Herguth, W. R., & Warne, T. M. (2001). Turbine Lubrication in the 21st Century. ASTM.

Kim, J. (2007). Spray cooling heat transfer: the state of the art. International Journal of Heat and Fluid Flow, 28(4), 753-767.

King, S., Dobson, P., & Jarvie, H. (2018, October 25). Nanoparticle. Retrieved from https://www.britannica.com/science/nanoparticle

Komarneni, S., Parker, J. C., Wollenberger, H. J., & Eastman, J. A. (n.d.). Nanophase and Nanocomposite Materials II. In MRS Symposium Proceedings (Vol. 703). 1997.

Kostic, M., & Simham, K. C. (2009, January). Computerized, transient hot-wire thermal conductivity (HWTC) apparatus for nanofluids. In Proceedings of the 6th WSEAS International Conference on Heat and Mass Transfer (HMT’09) (pp. 71-78).

Shen B, Shih AJ, Tung SC. Application of nanofluids in minimum quantity lubrication grinding. Tribology Transactions. 2008 Sep 22;51(6):730-7.

Kurt, H., & Kayfeci, M. (2009). Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural networks. Applied energy, 86(10), 2244-2248.

Lee, S., Choi, S. U., Li, S., & Eastman, J. A. (1999). Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. Journal of Heat Transfer,121(2), 280-289.

Li, C. H., & Peterson, G. P. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity nanoparticle... Journal of Applied Physics,99.

Li, C. H., & Peterson, G. P. (2007). The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. Journal of Applied Physics,101.

Mintsa, H. A., Roy, G., & Nguyen, C. T. (2008). New Temperature Dependent Thermal Conductivity Data of Water Based Nanofluids. Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment,290-294.

Mishra, P. C., Nayak, S. K., & Mukherjee, S. (2013). Thermal conductivity of nanofluids-an extensive literature review. International Journal of Engineering Research and Technology, Bhubaneswar, 2(9), 734-745

Oh, D., Jain, A., Eaton, J. K., Goodson, K. E., & Lee, J. S. (2008). Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. International Journal of Heat and Fluid Flow,29, 1456-1461.

Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. Experimental Heat Transfer,11(2), 151-170.

Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170.

Parker, W. J., Jenkins, R. J., Butler, C. P., & Abbott, G. L. (1961). Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of applied physics, 32(9), 1679-1684

Powell, R. W. (1957). Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits. Journal of Scientific Instruments, 34(12), 485.

Prasher, R., Phelan, P. E., &, P. (2006). Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid). Nano Letters,6(7), 1529-1534.

Pryazhnikov, M. I., Minakov, A. V., Rudyak, V. Y., & Guzei, D. V. (2017). Thermal Conductivity Measurements of Nanofluids. International Journal of Heat and Mass Transfer,104, 1275-1282.

Puliti G, Paolucci S, Sen M. Thermodynamic properties of gold–water nanofluids using molecular dynamics. Journal of Nanoparticle Research. 2012 Dec;14(12):1-4.

Sun, T., & Teja, A. S. (2004). Density, viscosity and thermal conductivity of aqueous solutions of propylene glycol, dipropylene glycol, and tripropylene glycol between 290 K and 460 K. Journal of Chemical & Engineering Data, 49(5), 1311-1317.

Sundar, L. S., Farooky, M. H., Sarada, S. N., & Singh, M. K. (2013). Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. International Communications in Heat and Mass Transfer,41, 41-46.

Tzeng, S. C., Lin, C. W., & Huang, K. D. (2005). Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles. Acta Mechanica, 179(1-2), 11-23.

Usri, N. A., Azmi, W. H., Mamat, R., Hamid, A., & Najafi, G. (2015). Thermal Conductivity Enhancement of Al2O3 Nanofluid in Ethylene Glycol and Water Mixture. Energy Procedia,79, 397-402.

Wang, X., Xu, X., & Choi, S. U. (1999). Thermal Conductivity of Nanoparticle–Fluid Mixture. Journal of Thermophysics and Heat Transfer,13(4), 474-480.

Wong, K. V., & De Leon, O. (2010). Applications of nanofluids: current and future. Advances in mechanical engineering, 2, 519659.

Xie, H., Lee, H., Youn, W., & Choi, M. (2003). Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. Journal of Applied physics, 94(8), 4967-4971a

Yoo, D., Hong, K. S., & Tang, H. (2007). Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochimica Acta,455(1-2), 66-69.

Zakaria, I., Azmi, W. H., Mohamed, W. A. N. W., Mamat, R., & Najafi, G. (2015). Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water-ethylene glycol mixture for proton exchange membrane fuel cell application. International Communications in Heat and Mass Transfer, 61, 61-68.

Zawrah, M. F., Zayed, H. A., Essawy, R. A., Nassar, A. H., & Taha, M. A. (2013). Preparation by mechanical alloying, characterization and sintering of Cu–20 wt.% Al2O3 nanocomposites. Materials & Design, 46, 485-490.

Zhang, X., Gu, H., & Fujii, M. (2007). Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental Thermal and Fluid Science,31(6), 593-599.

Zhou, S. Q., & Ni, R. (2008). Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Applied Physics Letters, 92(9), 093123.

Zhu, D., Li, X., Wang, N., Wang, X., Gao, J., & Li, H. (2009). Dispersion behavior and thermal conductivity characteristics of Al2O3 –H2O nanofluids. Current Applied Physics,9(1), 131-139.

Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials science and engineering: R: Reports. 2005 May 19;49(4):89-112.

Ma KR, Banister D. Excess commuting: a critical review. Transport reviews. 2006 Nov 1;26(6):749-67.

Chopkar, M., Das, P. K., and Manna, I., Synthesis and Characterization of a Nanofluid for Advanced Heat Transfer Applications, Scripta Materialia, vol. 55, pp. 549–552, 2006.

Panda AK, Singh RK, Mishra DK. Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews. 2010 Jan 1;14(1):233-48.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Thermal Engineering and Applications