Open Access Open Access  Restricted Access Subscription or Fee Access

Study and Analysis of 5G Research Activities

E.N. Ganesh

Abstract


This paper summarizes the key initiatives in favor of 5G wireless communication networks. Recent program and project activities and documents are highlighted. A closer examination of a series of 5G-related projects in the European Union is carried out. The literature review is limited to recent issues of IEEE Communications 5G Journal and related white papers from various sources. The aim is to shed light on what 5G is: what are the foundations of the basic concept of 5G systems, what the key challenges are, and how to overcome them. The researched benchmarks indicate that in addition to the technologies that increase capacity, 5G must offer, such as low latency, super-reliable communication, and massive connectivity. Therefore, the most demanding part of the 5G development process will be the design of a system concept platform that is sufficiently flexible to enable the successful integration and management of various discrete technologies optimized for different use cases.


Keywords


Wireless communication, Network, data, 5G systems, Internet

Full Text:

PDF

References


5G wikipedia page. [Online]. Available: http://en.wikipedia.org/wiki/5G

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, pp. 1065–1082, Jun. 2014.

P. Popovski, V. Braun, H.-P. Mayer, et al. “ICT-317669-METIS/D1.1 V1 Scenarios, requirements and KPIs for 5G mobile and wireless system,” Tech. Rep., May 2013. [Online]. Available: https://www.metis2020.com/wp-content/uploads/deliverables/ METIS D1.1 v1.pdf.

C.-L. I, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag., vol. 52, pp. 66–73, Feb. 2014.

F. Boccardi, R. W. Heath Jr., A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, pp. 74–80, Feb. 2014.

N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, T. Sukhavasi, C. Patel, and S. Geirhofer, “Network densification: the dominant theme for wireless evolution into 5G,” IEEE Commun. Mag., vol. 52, pp. 82–89, Feb. 2014.

B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, “Networks and devices for the 5G era,” IEEE Commun. Mag., vol. 52, pp. 90–96, Feb. 2014.

G. Wunder, P. Jung, M. Kasparick, T. Wild, Y. Chen, S. ten Brink,Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kt´enas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag., vol. 52, pp. 97–105, Feb. 2014.

W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results,” IEEE Commun. Mag., vol. 52, pp. 106–113, Feb. 2014.

S. Hong, J. Brand, J. I. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag., vol. 52, pp. 114–121, Feb. 2014.

C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. H. S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag., vol. 52, pp. 122–130, Feb. 2014.

X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, “Cache in the air: exploiting content caching and delivery techniques for 5G systems,” IEEE Commun. Mag., vol. 52, pp. 131–139, Feb. 2014.

G. Fettweiss and S. Alamouti, “5G: personal mobile internet beyond what cellular did to telephony,” IEEE Commun. Mag., vol. 52, pp. 140– 145, Feb. 2014.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag., vol. 52, pp. 26–35, May 2014.

S. Chen and J. Zhao, “The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication,” IEEE Commun. Mag., vol. 52, pp. 36–43, May 2014.

V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Los-sow, M. Sternad, R. Apelfrojd,¨ and T. Svensson, “The role of small cells, coordinated multipoint, and massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, pp. 44–51, May 2014.

W. Nam, D. Bai, J. Lee, and I. Kang, “Advanced interference man-agement for 5G cellular networks,” IEEE Commun. Mag., vol. 52, pp. 52–60, May 2014.

J. Xu, J. Wang, Y. Zhu, Y. Yang, X. Zheng, S. Wang, L. Liu, K. Horne-man, and Y. Teng, “Cooperative distributed optimization for the hyper-dense small cell deployment,” IEEE Commun. Mag., vol. 52, pp. 61–67, May 2014.

P. Rost, C. J. Bernandos, A. De Domenico, M. Di Girolamo, M. Lalam, Maeder, D. Sabella, and D. W ubben,¨ “Cloud technologies for flexible 5G radio access networks,” IEEE Commun. Mag., vol. 52, pp. 68–76, May 2014.

J. Mitola III, J. Guerci, J. Reed, Y.-D. Yao, Y. Chen, T. C. Clancy,Dwyer, H. Li, H. Man, R. McGwier, and Y. Guo, “Accelerating 5G QoE via public-private spectrum sharing,” IEEE Commun. Mag., vol. 52, pp. 77–85, May 2014.

M. Nader Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions,” IEEE Commun. Mag., vol. 52, pp. 86–92, May 2014.

R. Q. Hu and Y. Qian, “An energy efficient spectrum efficient wireless heterogeneous network framework for 5G systems,” IEEE Commun. Mag., vol. 52, pp. 94–101, May 2014.

“4G Americas’ summary of global 5G initiatives,” White Paper, 4G Americas, Jun. 2014. [Online]. Available: http://www.4gamericas.org/documents/2014 4GA Summary of Global 5G Initiatives Final.pdf

“Looking ahead to 5G – building a virtual zero latency gigabit experience,” White Paper, Nokia Solutions and Networks, Dec. 2013. [Online]. Available: http://nsn.com/sites/default/files/document/nsn 5g white paper.pdf

“5G: a technology vision,” White Paper, Huawei, Nov. 2013. [Online]. Available: http://www.huawei.com/5gwhitepaper

“5G radio access,” White Paper, Ericsson, Jun. 2013. [Online]. Available: http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf

“Evolution, converge, and innovation – 5G white paper,” White Paper, Datang Wireless Mobile Innovation Center, Dec. 2013. [Online]. Available: http://www.datanggroup.cn/upload/accessory/ 201312/2013129194455265372.pdf

“5G – driving the convergence of the physical and digital worlds,” White Paper, ZTE, Feb. 2014. [Online]. Available: http://wwwen.zte.com.cn/ en/products/bearer/201402/P02014022140221415329571322.pdf

“5G radio access: requirements, concepts and technologies,” White Paper, NTT DOCOMO, Inc., Jul. 2014. [Online]. Available: https://www.nttdocomo.co.jp/english/binary/pdf/corporate/ technology/whitepaper 5g/DOCOMO 5G White Paper.pdf

“5G radio network architecture,” White Paper, Radio Access and Spectrum FP7 - Future Networks Cluster, Feb. 2014. [Online]. Available: http://www.ict-ras.eu/

Horizon 2020 – The EU Framework Programme for Research and Innovation. [Online]. Available: http://ec.europa.eu/programmes/ horizon2020/

The 5G Infrastructure Public Private Partnership. [Online]. Available: http://5g-ppp.eu/

FP7 Integrating Project METIS (ICT 317669). [Online]. Available: https://www.metis2020.com/

P. Popovski, V. Braun, G. Mange, P. Fertl, D. Gozalves-Serrano, N. Bauer, H. Droste, A. Roos, G. Zimmermann, M. Fallgren, A. H oglung,¨ H. Tullberg, S. Jeux, O. Bulacki, J. Eichinger, Z. Li, P. Marsch, K. Pawlak, M. Boldi, and J. F. Monserrat, “ICT-317669-METIS/D6.2 V1 Initial report on horizontal topics, first results and 5G system concept,” Tech. Rep., Apr. 2014. [Online]. Available: https://www.metis2020.com/wp-content/uploads/deliverables/ METIS D6.2 v1.pdf

FP7 STReP project 5GNOW (ICT 318555). [Online]. Available: http://www.5gnow.eu/

FP7 STReP project EMPhAtiC (ICT 318362). [Online]. Available: http://www.ict-emphatic.eu/

FP7 STReP project E3NETWORK (ICT 317957). [Online]. Available: http://www.ict-e3network.eu/

FP7 STReP project PHYLAWS (ICT 317562). [Online]. Available: http://www.phylaws-ict.org/

FP7 STReP project DUPLO (ICT 316369). [Online]. Available: http://www.fp7-duplo.eu/

FP7 STReP project CROWD (ICT 318115). [Online]. Available: http://www.ict-crowd.eu/

FP7 STReP project DIWINE (ICT 318177). [Online]. Available: http://diwine-project.eu/

FP7 STReP project iJOIN (ICT 317941). [Online]. Available: http://www.ict-ijoin.eu/

FP7 STReP project TROPIC (ICT 318784). [Online]. Available: http://www.ict-tropic.eu/

FP7 STReP project TUCAN3G (ICT 601102). [Online]. Available: http://www.ict-tucan3g.eu/

FP7 Integrating Project MiWaveS (ICT 619563). [Online]. Available: http://www.miwaves.eu/

FP7 STReP project ADEL (ICT 619647). [Online]. Available: http://www.fp7-adel.eu/

FP7 STReP project SOLDER (ICT 619687). [Online]. Available: http://ict-solder.eu/

FP7 Coordination Action CRS-i (ICT 318563). [Online]. Available: http://www.ict-crsi.eu/

FP7 STReP project CoRaSat (ICT 316779). [Online]. Available: http://www.ict-corasat.eu/

FP7 STReP project SEMAFOUR (ICT 316384). [Online]. Available: http://fp7-semafour.eu/

FP7 STReP project MAMMOET (ICT 619086). [Online]. Available: http://www.mammoet-project.eu/

FP7 STReP project HARP (ICT 318489). [Online]. Available: http://www.fp7-harp.eu/

FP7 Integrating Project MCN (ICT 318109). [Online]. Available: http://www.mobile-cloud-networking.eu/

FP7 STReP project MOTO (ICT 317959). [Online]. Available: http://www.fp7-moto.eu/

COST Action IC1004. [Online]. Available: http://www.ic1004.org/

FP7 NoE project NEWCOM# (ICT 318306). [Online]. Available: http://www.newcom-project.eu/

FP7 STReP project SODALES (ICT 318600). [Online]. Available: http://www.fp7-sodales.eu/

FP7 STReP project RESCUE (ICT 619555). [Online]. Available: http://www.ict-rescue.eu/

FP7 Integrating Project ABSOLUTE (ICT 318632). [Online]. Available: http://www.absolute-project.eu/

FP7 Integrating Project LEXNET (ICT 318273). [Online]. Available: http://www.lexnet-project.eu/

M. Tesanovic, E. Conil, A. De Domenico, R. Aguero,¨ F. Freudenstein, L. M. Correia, S. Bories, L. Martens, P. M. Wiedemann, and J. Wiart, “The LEXNET project: wireless networks and EMF: paving the way for low-EMF networks of the future,” IEEE Veh. Technol. Mag., vol. 9, pp. 20–28, Jun. 2014.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Telecommunication, Switching Systems and Networks