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1. INTRODUCTION 

 

There are some CAD tools available for the 

automatic synthesis of basic analog circuits, 

such as operational amplifiers, converters etc. 

for the given specifications. Often, users keep 

demanding more and more hard specifications 

for which the tool does not give a valid solution. 

A question always comes to the user’s mind 

“Something is probably wrong with the tool?” 

Another question also comes to the mind 

“Whether the given specifications are practical 

at all or are they feasible in a particular (given) 

technology?”  

 

The present study is an effort to answer the 

second question above. To explore the limits and 

limiting relationships, a circuit of current-mirror 

loaded differential amplifier has been chosen 

which is a commonly used first stage in various 

operational amplifiers and comparators. The two 

small signal parameters—dc differential voltage 

gain (  ) and unity-gain bandwidth (   ) have 

been considered for the current analysis.  

 

First, the analytical formulation was done and 

then the structures were simulated to verify the 

analytical results for seven different CMOS 

processes from varying fabrication houses in the 

range 1.25 m down to 0.25 m. 

 

2. SMALL-SIGNAL RELATIONSHIPS OF 

A DIFFERENTIAL AMPLIFIER 

 

The transistor level circuit for a current mirror 

loaded differential amplifier is shown in  

Figure 1.  

A. Unity-Gain Bandwidth (   ) 

Unity-gain bandwidth       of the 

differential amplifier of Figure 1 is given by 
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where mig is the transconductance of the input 

transistors M1 and M2, iW  is the width and 

length and iL  is the length of input transistors, 
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Fig. 1:  Differential Amplifier. 

 

nk is the process trans-conductance parameter of 

input transistors (nMOS), and    is the total load 

capacitance (internal as well as external) at the 

output node. 

 

B. Differential dc Voltage Gain ( Ad ) 

The differential dc voltage gain ( Ad ) of the 

differential amplifier is given by 
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where oI  is the bias tail current of the 

differential amplifier,    and     are the drain 

conductance of input and load transistors, 

respectively. The drain conductance    of a 

MOS transistor with length L and drain to 

source current as    ⁄  is approximated as 
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where 








DS

d

dV

dx
 (known as channel-length 

modulation parameter) is a process parameter 

[1]. 

 

3. ANALYTICAL FORMULATION OF 

PRODUCT OF GAIN AND UNITY-

GAIN BANDWIDTH 

 

The product of the differential dc voltage gain 

and unity-gain bandwidth of a differential 

amplifier using Eqs. (1) and (2) can be written as 
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Substituting the values of technology constants 


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
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



DS

d

dV

dx
 as 0.1 m/V for nMOS and 0.05 m/V 

for pMOS transistors for  1.2 m CMOS process 

in (5), it reduces to 
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This reduced expression can be obtained for 

other technologies by substituting the 

corresponding values of 








DS

d

dV

dx
 for nMOS 

and pMOS transistors in Eq. (5). 

 

4. COMPUTATION OF LOAD FOR AN 

UNLOADED AMPLIFIER 

 

For an unloaded amplifier, the external 

capacitance is zero implying that the drain-to-
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bulkcapacitances of the input and the load 

transistor form the capacitive load [2], i.e. 

 
dbldbiLL CCCC  (int)

    … (7) 

where 
dbiC  and 

dblC  are the drain-to-bulk 

capacitances of the input and load transistors 

respectively. 

 

For a transistor the drain-to-bulk capacitance is 

given by 

swddbdb CCC  '
              …  (8) 

where dbC  is bottom plate capacitance of the 

drain junction and 
swdC 

 is the side wall 

capacitance of the drain junction. 

Further, 

jdddb CAC                             …  (9) 

dA  is the area of the bottom plate of the 

junction, which is the same as the drain area and 

jdC  is the junction capacitance per unit area for 

the one-sided step junction and is given by 
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where 
0jC  is the zero-bias junction capacitance 

and is a process constant given by 
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and DBV  is the drain-to-bulk potential of the 

junction. All other symbols have their usual 

meanings. 

The built-in potential, 0  is given by 
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where    is the thermal voltage,    and    are 

the doping densities of p-type and n-type 

materials on either side of the junction. 

The sidewall capacitance of the drain region, 

swdC 
 is given by 

swjdswd CPC               … (13) 

where 
dP  is the perimeter of the drain region 

excluding the portion/wall adjacent to the gate 

and 
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Hence, the drain-to-bulk capacitance of a 

transistor can be written as 

swjdjdddb CPCAC               … (15) 

For the input transistor (n MOS type) we 

rewrite it as 

    nswjndinjdndidbi CLWCLWC ,,,, 2*   … (16) 

and for load transistor (pMOS type) 

   
pswjpdlpjdpdldbl CLWCLWC ,,,, 2* 
b

… (17)
 

where 
ndL ,

 and 
pdL ,

 are the lengths of drain 

extensions beyond the gate for n-type and p-type 

transistors respectively. 

 

From equations (6), (15) and (16), the total load 

seen on the output node of the amplifier is given 

by 
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5. ASSUMPTIONS FOR ANALYTICAL 

FORMULATION 

 

In order to simplify the overall expression of the 
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product UGBAd * , we make the following 

assumptions: 

 

i) Typically drain extends 4 beyond the gate, 

therefore 

             
4,,  pdnd LL

                       … (19) 

where  is minimum possible dimension in 

a technology with 2 as the minimum 

feature size. 

ii) Since the differential gain and unity-gain 

bandwidth are independent of width of the 

load transistor, lW , it can be chosen to be 

minimum i.e. 2. Substituting this 

    nswjinjdidbi CWCWC ,, 4*24*   (20) 

    pswjpjddbl CCC ,, 4*224*2        (21) 

iii) Further, if we approximate that 

pjdnjd CC ,, ~  and 
pjdnjd CC ,, ~ , the total 

load capacitance is given by 

    swjijdi
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CWCW
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
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(22) 

iv) For most analog applications, to increase the 

input transistor transconductance, 

2iW , which further reduces equation 

(6.28) to the approximation 

  swjijdiL CWCWC   184    …(23) 

Equation (22) can also be written as 
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Substituting this as the load in equation (6.13) 

the upper bound on the product UGBAd *  

becomes 
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v) Further, for most analog applications 

18iW , then the above eqn. (6.31) 

further reduces to 
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vi) Also, typically 
li LL  , which further 

reduces the above expression (26) to 
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This is a pure technology constant. Therefore, 

we can say that the product UGBAd *  is a 

technology constant. 

Even if li LL  is not true, and li LL   as in 

our case, the equation (26) reduces to 
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20
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which is also a technology constant. 

Equation (25) with li LL  , is plotted as a 

function of iW  for several technologies as 

shown in Figure 2. Clearly UGBAd *  becomes 

independent of iW  for wide transistors and is a 

constant for a technology. It implies that gain of 

the circuit in a technology can only be increased 

at the cost of unity-gain bandwidth or vice-a-

versa. The value of UGBAd *  at mWi 500  

in various technologies has been plotted in 

Figure 3. It is evident that in most cases the 

value of UGBAd *  increases with the scaling 

of technology. 
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These results were obtained with no external 

load connected to the output of the differential 

amplifier. Only the parasitic drain capacitance 

loads of the input and load transistors were 

considered. 

 

 

Fig. 2:  Analytical Ad*UGB Product Variation with Technology. 

 

 

Fig. 3: Ad*UGB Product Variation at mWi 500  for various Technologies. 
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6. DAMPING FACTOR FOR   A LOADED 

DIFFERENTIAL AMPLIFIER 

 

However, given that the unity gain bandwidth, 

    is inversely proportional to the load 

connected at the output of the differential 

amplifier, the limiting value of the gain unity-

gain bandwidth product, UGBAd *  for an 

amplifier loaded with external capacitor of value 

)(extLC  can be worked out as 
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 UGBAdfload                                 …(31) 

where 
loadf  is a load dependent degradation 

factor defined by 
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Equations (30) and (31) provides a rapid way 

of computing the loaded gain unity-gain 

bandwidth product, UGBAd *  for any 

differential amplifier given its unloaded 

UGBAd * product. Figure 4 shows how the 

UGBAd * product varies with the external load 

)(extLC . 

 

 

Fig.4. Analytical Ad*UGB Product Variation with External Load LC for MCNC 1.25 µm CMOS 

Technology. 
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7. CONCLUSION 

 

There exits an upper limit for the product  

( UGBAd * ) of differential dc voltage gain  

( Ad ) and unity-gain bandwidth (   ) of an 

externally unloaded differential amplifier and  

this maximum limit is constrained by the 

technology parameters and hence is a 

technology constant. Further, as the external 

load increases, the upper limit of obtainable 

UGBAd * product reduces by a degradation 

factor. 
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