
Journal of VLSI Design Tools & Technology

Volume 1, Issue 1-3 Compilation 2011

ISSN: 2249 474X© STM Journals 2011. All Rights Reserved. Page 9

Analysis of Resource Utilization for a Floating-Point Complex Multiplication in

FPGA

Anitha Mary. X
1*

, Dojin Domnic
2
& K. Rajasekaran

3

1
Assistant Professor,

2
PG Scholar,

3
Head of the Department

Department of Electronics and Instrumentation, Karunya University, Coimbatore, India

*Author for Correspondence E-mail: anithajohnson2003@gmail.com

INTRODUCTION

Digital Signal Processing (DSP) is the widely

used technology in engineering discipline. It is

a sector which grows very fast bringing

tremendous challenges to the engineering

community. All the computations in the DSP

domain are additions and multiplications.

Faster additions and multiplications are of

great importance in this domain. In the case of

floating point numbers the additions is much

complex than multiplication and therefore to

improve the efficiency and resource

utilization, a newer algorithms are necessary.

The number which is understandable by the

computer is binary and it is limited by the

word size. It is very difficult to represent very

large numbers with the help of fixed point

numbers. This problem can be resolved by

using floating point numbers because a large

or a very small number can be represented by

fewer number of bits as compared to the fixed

point numbers. But the floating point numbers

take more resources and computation time as

compared to fixed point numbers [2]. In a

complex multiplication it requires 4

multiplication and 2 additions to be performed,

it is given by the equation below

(a+bj)(c+dj)= (ac-bd) + (ad+bc)j

The proposed method uses efficient use of

VHDL for targeting FPGAs in order to match

constraints in area and timing issues [1]. The

method is implemented in SPARTAN 3E.

Section II deals with the floating point

numbers, section III deals with the resource

utilization by Xilinx IP cores, section IV deals

with the resource utilization by the proposed

method and section V shows the comparative

result.

FLOATING-POINT NUMBERS

Floating point number divides the number into

significant part and exponent part. The small

ABSTRACT

Complex multiplication is an important operation frequently used in the digital signal processing. This paper

shows the resource utilization for a complex multiplication on Spartan3E by using a 9 bit floating point

numbers. The proposed method clearly shows that resource utilization for complex multiplication is less than

the IP cores proposed by the Xilinx Company. More over this paper shows how the significant and the

exponent of the floating point number effect the resource utilization for a complex multiplication.

Keywords: Complex multiplication, Floating point, IP cores

mailto:anithajohnson2003@gmail.com

Journal of VLSI Design Tools & Technology

Volume 1, Issue 1-3 Compilation 2011

ISSN: 2249 474X© STM Journals 2011. All Rights Reserved. Page 10

numbers are represented by the significant part

which decides the precision of the floating

point numbers. The range is decided by the

exponent part. Larger the exponent, wider will

be the range. In 1985, the Institute of

Electrical and Electronic Engineers published

IEEE Standard 754 for floating-point

arithmetic [5].

 All the processors built today uses IEEE

standard 754. The IEEE Standard 754 consists

of one sign bit, eight exponent bit and 23

significant bit. A binary fraction is being used

in IEEE 754 and exponent is considered to be

a power of two. The format of a single-

precision floating-point number is shown in

Figure 1. The leftmost bit indicates the sign of

the number, with a zero indicating positive and

a one indicating negative. The exponent

occupies eight bits and is also signed. A

negative exponent indicates that the fraction is

multiplied by a negative power of two. The

exponent is stored as an excess 127 number,

which means that the value stored is 127 more

than the true value. A stored value of one

indicates a true value of -126. The fraction part

is a 23-bit binary fraction with the binary point

assumed to be to the left of the first bit of the

fraction. The approximate range of such a

number is given by ± 10^-38 to ±10^38.

Fig. 1 Format of an IEEE 754 Single-Precision

Format

USING IP CORES

Using IP cores given in the Xilinx 10.1 for

floating point arithmetic the 9 bit floating

point number is given by 1 sign bit, 5

exponent and 3 significant. The IP core is used

for converting the fixed point to floating point

and performs floating point multiplication and

addition and also converting floating point

back to the fixed point. The above mentioned

IP cores are being used and the resource

utilized is given in Table I.

Table I Resource Utilization using IP Cores

PROPOSED METHOD

In this method we are dealing with 9 bit

floating point number with 1 sign bit, 5

exponent and 3 significant.

Fixed to floating point Conversion

First the 9 bit fixed point number is first

converted into the 9 bit floating point number

and the algorithm used is given below.

Journal of VLSI Design Tools & Technology

Volume 1, Issue 1-3 Compilation 2011

ISSN: 2249 474X© STM Journals 2011. All Rights Reserved. Page 11

1. Shift the integer part until the last ‘1’

remains LSB of the register.

2. If right shifting is done then

 Exponent = bias + (no. of shifting operations)

3. If left shifting is done then

 Exponent = bias – (no. of shifting

operations)

4. Shifted out numbers forms the significant

part. [4]

Floating point Multiplication

The floating point multiplication is performed

using the following algorithm.

A binary floating-point number x is

represented as a significant and an exponent, x

= s .2^e. The formula

(s1 × 2^e1) • (s2 × 2^e2) = (s1 • s2) ×

2^ (e1+e2)

shows that a floating-point multiply algorithm

has several parts. Significant multiplication is

done by using radix 2 multiplication algorithm

which is given by,

The simplest multiplier computes the product

of two unsigned numbers, one bit at a time, as

illustrated in Figure 2. The numbers to be

multiplied are an–1an–2…..a0 and bn–1bn–2

……b0, and they are placed in registers A and

B, respectively. Register P is initially 0. Each

multiply step has two parts.

Fig. 2 Radix 2 Multiplication Algorithm.

1. If the least-significant bit of A is 1, then

register B, containing bn–1bn–2b0, is

added to P; otherwise 00 …. 00 is added to P.

The sum is placed back into P.

2. Registers P and A are shifted right, with the

carry-out of the sum being moved into the

high-order bit of P, the low-order bit of P

being moved into register A, and the rightmost

bit of A, which is not used in the rest of the

algorithm, being shifted out. After n steps, the

product appears in registers P and A, with A

holding the lower-order bits.

The next step is the rounding .If p is the

number of bits in the significant, and then the

A, B, and P registers should be p bits wide.

Multiply the two significant to obtain a 2p-bit

product in the (P, A) registers as shown in the

Figure 3.

 Fig. 3 Rounding Techniques

During the multiplication, the first p -2 times a

bit is shifted into the A register, OR it into the

sticky bit. This will be used in halfway cases.

Let s represent the sticky bit, g (for guard) the

most-significant bit of A and r (for round) the

second most-significant bit of A. There are

two cases:1. The high-order bit of P is 0. Shift

Journal of VLSI Design Tools & Technology

Volume 1, Issue 1-3 Compilation 2011

ISSN: 2249 474X© STM Journals 2011. All Rights Reserved. Page 12

left 1 bit, shifting in the g bit from A. Shifting

the rest of A is not necessary.

2. The high-order bit of P is 1. Set s: = s v r

and r: = g, and add 1 to the exponent. [3]

 Floating Point Addition Algorithm

To find the sign bit:

Check whether both the numbers are having

the same sign bit, if so then the answer also

has the same. If the sign are different first the

exponents are compared and bigger exponents

sign is fixed, if exponents (e) are the same

then bigger significant holding number sign is

taken.

To find the exponent and significant part:

1. If e1<e2, swap the operands.

2. If signs are different significant 2s’

complement is taken.

3. Significant is shifted right with ‘1’

accordingly to make e1=e2 and e1 is

assigned as exponent if signs are different.

4. Significant is shifted with ‘0’ accordingly

to make e1=e2 and e1 is pushed to

exponent out if signs are same.

5. Compute preliminary significant

‘SIG’=s1+s2

6. If sign are same and carry is present in the

above addition carry is taken in and LSB

is removed and e1 is added by ‘1’.

7. If carry is not present we need to left shift

the SIG to have a ‘1’ in the MSB.

8. For every left shift we need to decrement

the exponent.

9. In step ‘5’ and ‘6’ we have right shifted

the significant, those shifted out bits are

XORed together and if ‘1’ is obtained then

SIG is incremented.

Float point to fixed point Conversion

Finally the result obtained in floating point is

converted to fixed point and the algorithm

performed is given by

1. Exponent will be subtracted by the bias.

2. If difference is positive then left shift with

an added ‘1’ as the msb..

3. If difference is negative take the 2’s

complement and right shift with a ‘1’.

Resource utilization

The resource utilized for the above mentioned

complex multiplication which consisting of

one sign bit 5 exponent and 3 significant is

given in table II. It shows that the number of

slices and LUTs used are less when compared

to IP cores.

Table II Resource Utilization using Proposed

Method with 5 EXPONENt and 3 Significant.

Journal of VLSI Design Tools & Technology

Volume 1, Issue 1-3 Compilation 2011

ISSN: 2249 474X© STM Journals 2011. All Rights Reserved. Page 13

To understand how the significant and the

exponent of the floating point number effect

the resource utilization for a complex

multiplication. The complex multiplication is

performed on a 9 bit floating point number

which consists of one sign bit, 4 exponent bit

and 4 significant bit.

Here we can see that the range of the floating

point number has came down from -122880 -

+122880 to -496 to +496. But we can see that

the accuracy has been increased in a great

way. The resource utilization is given in table

III.

Table III Resource utilization using proposed

method with 4 exponent and 4 significant.

COMPARITIVE RESULTS

Table IV depicts that the proposed method is

more efficient than the IP cores provided by

the Xilinx Company. We also see that the time

required to compute the floating point

arithmetic with the help of Xilinx IP core takes

about 25 clocks where as the proposed method

could give the results in 5 clocks. Also we find

that the number of resource utilization

increases with the significant number.

Table IV Comparative Analysis of Floating

Point numbers

Methods Slic

e

Use

d

(%)

Range Bits Clk

req

Floating point

number with 1

sign bit, 5

exponent and

3 significant

by using IP

core

87

 -

122880

 to

+12288

0

 9

25

Floating point

number with 1

sign bit, 5

exponent and

3 significant

28

 -

122880

 to

+12288

0

 9

 5

Floating point

number with 1

sign bit, 4

exponent and

4 significant

31

 -496

 to

 496

 9

 5

CONCLUSION

In DSP applications, floating point numbers

plays an important role especially for addition

Journal of VLSI Design Tools & Technology

Volume 1, Issue 1-3 Compilation 2011

ISSN: 2249 474X© STM Journals 2011. All Rights Reserved. Page 14

and multiplication. It is found that the

proposed method is highly efficient than IP

cores proposed by Xilinx. The clock frequency

of SPARTAN 3E is 20 MHz. The time

required to implement the proposed method is

0.25µs (5x0.05µs) whereas the time taken by

IP cores is 1.25µs (25x0.05µs). We could also

make a conclusion that as the number of the

significant number get increased in the

floating point number the resource utilization

also get increased.

REFERENCES

1. Iakovos Stamoulis, Nicky Ford, Martin

White et al. VHDL Methodologies for

effective implementation in FPGA devices

and subsequent transition to ASIC

technology Designer Track DATE ‘98,

Paris. February 23–26, 1998.

2. Bob Brown Floating Point Numbers

Computer Science Department Southern

Polytechnic State University,

http://www.spsu.edu/cs/faculty/bbrown/pa

pers/floating.pdf

3. David Goldberg Computer arithmetic

Appendix H, Xerox Palo Alto Research

Center Elsevier Science. 2003.

http://www.spsu.edu/cs/faculty/bbrown/papers/floating.pdf
http://www.spsu.edu/cs/faculty/bbrown/papers/floating.pdf

	1-7
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

	1 An Explicit Approach to Compare Crosstalk Noise and Delay in VLSI RLC Interconnect Modeled with Skin Effect with Step and Ramp Input
	2 Analysis of Resource Utilization for a Floating-Point Complex Multiplication in FPGA
	3 Analysis of VLSI Circuits Designed with Single and Dual Channel Strained Silicon MOSFETs in Nanoregime
	4 Automatic Switch cum Fuse IC for Low Voltage, Low Power, High Performance Current Conveyors
	5 Gain Controlled Sinusoidal Oscillator Using Current Controlled Current Conveyors
	6 Modeling_Interconnect_Maheshwari_July_2011_Final
	7 Power Estimation for VLSI Circuits Using Neural Networks
	8 Time Domain Analysis in an On-chip High Speed RLCG Interconnection Network at 0.18 µm Technology
	8-9
	Page 8
	Page 9

