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Abstract 
Security has transformed out into a fundamental range of research in space of computer 

science. With the advancement of side channel attacks, all the private and public key 

cryptosystems accessible worldwide has been discovered defenceless. Accordingly there has 

broughtdireness up in planning resisting systems against such unpredictable attacks. Power 

analysis attacks, which is the most famous side channel attacks has turned out to be a test for 

the majority of the normal cryptosystems like advanced encryption standard (AES), data 

encryption standard (DES), Rivets-Shamir-Adleman (RSA), ECC and so forth. MIST is an 

algorithm which was intended for processing exponentiation. As the most critical operation of 

RSA is the modular exponentiation for encryption and decryption, MIST can assume an 

imperative part in planning modified RSA to counteract power analysis attacks. We have 

extended our work CRT-RSA (Chinese Remainder Theorem–Rivets-Shamir-Adleman) which is 

more widely used in computation. The analysis results shows that modified RSA can perform 

better in computing RSAespecially when CRT is has been used. The results have also been 

verified using VHDL (very high speed integrated circuits). 
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INTRODUCTION 
Security has been the most important 
component in technological scenario as it is 
responsible for securing all information passed 
through networked computers. Cryptographic 
algorithm has been widely used in network 
computers for secure transactions of secret 
information. In any case, regardless of these 
different security techniques presented by 
various cryptosystems, attacks always have 
been effective to discover a loophole to break 
the security of these systems. Side-channel 
attacks (SCA) are firmly identified with the 
presence of physically noticeable changes 
caused by the execution of operations in show 
microelectronic devices. Side channel attacks 
are those attacks that depend on side channel 
information. Side channels Information are 
those data that can be recovered from the 
microelectronic devices with no intrusion into 
the device. Presently the cryptographic devices 
are under the potential threat of side channel 
attacks. 

 

Side channel attacks are effective techniques 

to recoup delicate information of 

cryptographic gadgets. In cryptography, a 

side-channel attack is a sort of attack that in 

view of information picked up from the 

physical execution of a cryptosystem, as 

opposed to savage power or hypothetical 

shortcomings in the algorithms. For case, 

timing information, control utilization, 

electromagnetic releases or even stable can 

give an additional wellspring of information, 

which can be misused to break the framework 

some side channel attacks require specialized 

learning of the inward operation of the 

framework. Attackers use some or all of these 

side channel information along withother 

cryptanalytic techniques to reveal the secret 

key that usingby the device. Side channel 

analysis techniques are of high concern 

because these attacks can be mounted quickly. 
 

Power analysis attacks have been exhibited as 

a standout amongst the most intense attacks 

for most direct execution of symmetric and 

asymmetric ciphers. Power analysis attacks 

depend on the examination of power 

utilization of a cryptographic device. 

Execution of cryptographic operations devours 

control, these power utilization goes about as 

side channel information. Power utilization of 
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a device relies upon information it procedures 

and operations it performs. Cryptographic 

algorithms, for example, advanced encryption 

standard (AES), data encryption standard 

(DES), Rivets-Shamir-Adleman (RSA) and so 

forth is actualized in cryptographic devices. 

Execution these algorithms in the devices 

consumes power, this power consumption acts 

as side channel information. Attackers trace 

power consumption of a device on an 

oscilloscope and analyses the power traces to 

find out the secrete key of a device. Power 

analysis attacks are further divided into simple 

power analysis (SPA) and differential power 

analysis (DPA) respectively [1]. SPA uses few 

traces of power consumption to reveal and the 

cryptosystem and few key bits, whereas DPA 

uses a large number of power traces and make 

statistical analysis of them to reveal all the key 

bits by correlating them with some 

hypothetical power traces. 

 

DPA attacks worked in light of the fact that 

the power utilization of cryptographic device 

was reliant on the halfway estimations of the 

executed cryptographic algorithms. The 

objective of countermeasures is evacuating 

this reliance. The main idea of 

countermeasures against DPA attacks is to 

make the power consumption of the 

cryptographic device independent of the 

intermediate values of the executed 

cryptographic algorithm [1]. The 

countermeasures against DPA attacks that 

have been distributed so far can basically be 

classified into two gatherings i.e. 

randomization and masking. The fundamental 

thought of stowing away is to expel the 

information reliance of the power 

consumption, whereas concept of masking is 

to randomize the intermediate value that is 

proceed by cryptographic device. 

 
In this paper, we have used the MIST 

algorithm which computes modular 

exponentiation using some random number, 

with RSA and CRT-RSA to examine the 

effects on resisting power analysis attacks. The 

rest of the paper has been organized in 

following sections. Section 2 gives a detail on 

the background of how power analysis is 

resisted with some related works. Section 3 

presents RSA and CRT-RSA in details. The 

MIST algorithm has been briefly discussed 

followed by our proposed work and lastly 

shows the result and finally a conclusion has 

been formulated. 

 

BACKGROUND AND RELATED 

WORKS 
The main reason behind power analysis 
attacks is that almost all the cryptographic 
devices are built with CMOS. The CMOS has 
a special property that it power consumption 
depends on the operations it performed as well 
as the data on which they were performed. 
Countermeasure expels the information 
reliance of the power consumption. This 
implies either the execution of the algorithm is 
randomized or the power consumption 
qualities of the device are changed such that 
an aggressor can't without much of a stretch 
discover information reliance. Power analysis 
attacks works in light of the fact that the power 
utilization of cryptographic devices relies upon 
middle estimations of the executed 
cryptographic calculations. The objective of 
countermeasures is to make the power 
utilization of cryptographic devices free of the 
intermediate values and autonomous of the 
operations that are performed [1]. There are 
basically two ways to deal with accomplish 
this autonomy. The main approach is to 
fabricate devices such that the power 
consumption is arbitrary. This implies in each 
clock cycle arbitrary measure of energy is 
devoured. The second approach is to build 
devices that consume an equal amount of 
power for all operations and for all data 
values. Hence, equal amounts of power are 
consumed in each clock cycle. 
 
Masking could be achieved by randomizing 
the intermediate values that are processed by 
the cryptographic device. An advantage of this 
approach is that it can be implemented at the 
algorithm level without changing the power 
consumption characteristics of the 
cryptographic device. At the end of the day, 
masking permits make the power consumption 
autonomous of the middle of the road esteems, 
regardless of the possibility that the device has 
information subordinate power consumption 
[1].  

 

The least complex approach to conceal variety 

is to make the calculation entirely steady time, 
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for all conceivable mystery examples or 

stowing away inward state, so that the attacker 

can't reproduce inner calculations any more. 

This is finished by breaking the connection 

between the power consumption of the devices 

and the prepared information esteems. 

Consequently, cryptographic devices that are 

ensured by stowing away execute 

cryptographic calculations similarly as 

unprotected devices. In specific, they compute 

a similar intermediate values. However, the 

concealing countermeasures make it 

troublesome for an attacker to discover 

exploitable data in control traces [1].  

 

The most broad strategy to counter SCA 

attacks is to randomize information that may 

spill through different side channels, for 

example, power consumption, electromagnetic 

radiation, or execution time. The issue is to 

ensure that an assailant may acquire just 

irregular data, and in this way can't increase 

any helpful learning about the genuine 

beginning or potentially intermediate 

information associated with computations. In 

instance of elliptic curve cryptosystem, 

randomized projective directions technique is 

a down to earth countermeasure against SCA 

attacks in which an attacker can't anticipate the 

presence of a particular esteem on the grounds 

that the directions have been randomized [1]. 

 

Many works on resisting power analysis 

attacks on RSA appears in literature. All these 

works are based on the approaches discussed 

below. In 2004 Mamiya et al. [3] presented the 

concepts of using random initial points in 

computations which could start computations 

are at random points every time. This could 

actually randomize the operations in any 

computations. In 2005, Kim et al. [4] 

presented an approach that could immune 

RSA from power analysis attacks. In their 

computation they used a random number 

which was first multiplied and then the inverse 

of was computed to remove the effect of the 

random number. They also proposed an 

improve countermeasure against SPA and 

DPA in order to avoid reverse computation of 

modular exponentiation [5]. It is not necessary 

to compute an inverse of the random number r. 

It is very important to speed up the RSA 

computation and implementation. From this 

point of view, their proposed countermeasure 

is a more efficient and general method than 

Mamiya’s [3] countermeasure. This method 

could be extended to ECC public key 

cryptosystems which avoid the subtraction 

computation. 

 

In 2006, Yi Wang [6] pointed out the 

disadvantage of Kim’s improved 

countermeasure. The initial value of Kim's 

countermeasure for RSA is T [00] = 1 which 

will cause the possible attacks. Power 

consumption of modular multiplication of T 

[00] = 1 will have a big difference compared 

with other values. When the result change 

from ‘0’ to ‘1’ causes power, therefore, it is 

obvious to tell the difference between the disi = 

0 with other values. Yi Wang proposed an 

enhanced countermeasure in view of Kim's [4, 

5] which keeps away from this sort of 

conceivable attack and turn around 

computation of particular exponentiation for 

RSA public key cryptosystems in the 

meantime. The essential thought of proposed 

countermeasures was to change the underlying 

estimations of T[00] which could release the 

sensitive data in Kim's approach. Their 

approach demonstrated the modified Kim's [5] 

countermeasure for RSA public key 

cryptosystems [6]. 

 

In 2006, Kaminaga et al. [7] proposed a 

conventional method where the exponent d 

was blinded and evaluated as the private key. 

The attackers can extract d because it could be 

implemented with a single execution result. To 

prevent this, they propose a countermeasure 

that further divides the exponent and 

randomizes the processing order.  

 

Exponent and the input text performed in the 

conventional method are continued in the 

proposed method. The proposed 

countermeasure method was based on dividing 

the secret exponent d into two non-negative 

integers d0 and d1. In other words, the secret 

exponent is divided into the sum of two 

numbers as in d = d0 + d1. S0= y
d0

 mod N, S1 = 

y
d1

 mod N are set, and S0 * S1 mod N = y
d
 mod 

N is obtained. d0 is a random number less than 

d. To randomize the processing order of S0 and 

S1, the random number v having L(d) bits is 

used. Each bit of the value of v is read from 
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the most significant bit (MSB) side. If 0, S0 is 

calculated. If 1, S1 is calculated. 

 

In 2007, Santosh Ghosh et al. [8] have 

proposed a secure RSA implementation to resist 

timing and SPA attacks. They showed some 

implementation techniques of RSA which were 

insecure against different power analysis 

attacks. These implementations could leak the 

secret information while processing. They 

explained how simple square-multiply 

algorithm for RSA implementation was 

insecure against simple power analysis attacks. 

In this implementation, the exponent of 

plaintext was converted in binary values and 

then left to right binary exponentiation method 

was computed. Every single bit of exponent 

was represented by k. When the exponent k = 1 

then square operation was followed by multiply 

operation, otherwise only square operation was 

performed for corresponding bit of exponent k. 

It was an insecure design of RSA because from 

the power traces the adversaries could easily 

find the '1's and '0's bit values of the processed 

exponent k. Finally they proposed square and 

multiply always algorithm to resist timing and 

SPA attack.Here, the square operation was 

followed by multiplication operation at every 

round i.e. for every bit of exponent k. This was 

a secured implementation of RSA against SPA 

and timing attacks as adversaries could not find 

out the position of 1's and 0's in power traces. 

Ji-fang et al. [9] had proposed a new masking 

technique to resist against DPA attacks in year 

2009.In their work, first plaintext and exponent 

were masked and then processed left to right 

binary modular exponentiation model on 

masked plaintext and exponent. During each 

round, some inefficacy algorithm was run in 

between squaring and multiplication operation 

three times. At the end, the masked cipher text 

was unmasked to get the real cipher text. 

 

In 2012 Yin [10] propose a binary modular 

exponentiation RSA countermeasure keeping in 

mind the end goal to safeguard against the 

comparative power analysis by partitioning the 

private key e into nirregular parts and arbitrarily 

picking one of the parts to do one unit operation 

every determination till the secluded 

exponentiation of all parts are completed. The 

efficiency and security of their algorithm can be 

improved even more by adopting the parallel 

computing architecture [10]. The bit length of e 

is noted as le so e = (ele; ; e2; e1)2. According to 

the binary method, the calculation of M
e
 mod N, 

includes le time for loops. Such for a loop has 

defined as a unit operation of the modular 

exponentiation. The basic conception of their 

defence module is randomizing the 

computational process of the exponentiation 

algorithm. They first divide the private key e 

into random parts, and then randomly choose 

one of the parts to do one unit operation each 

selection till the modular exponentiations of all 

parts are completed, and finally calculate the 

modular multiplication of all the modular 

exponentiations to get the final result. 

 

THE RSA AND CRT-RSA 
The RSA cryptosystem is utilized for both 

confidentiality and authentication [11]. It is the 

most generally utilized public key encryption 

algorithm. The premise of the security of the 

RSA algorithm is that it is numerically 

infeasible to factor adequately huge whole 

numbers. The RSA algorithm is accepted to be 

secure if its keys have a length of no less than 

1024-bits. 

 

The algorithm appears below: 

Key Generation 

1. Choose two very large random prime 

integers: p and q 

2. Compute n and z, n = pq and z= (p-1) (q-1) 

3. Choose an integer e, 1 < e < z such that gcd 

(e, z) = 1 

4. Compute d, 1 < d < z such that ed ≡ (mod z) 

 

 The public key is (n, e) and the private key 

is (n, d) 

 The values of p, q and z are private 

 e is the public or encryption exponent 

 d is the private or decryption exponent 

 

Encryption: The cipher text C is computed by, 

C = M
e
 mod n                               (1) 

 

Decryption: The message M is computed by, 

M = C
d 
mod n                               (2) 

 

ALGORITHMS USED IN RSA 
Computation of RSA involves many other 

algorithms for different reasons like testing the 

primarily, computing GCD, fast computation 
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etc. The common algorithms used are 

discussed below. 

 

Rabin Miller Algorithm 

The Miller-Rabin primarily test or Rabin 

Miller primarily test is an algorithm for 

primarily testing which determines whether a 

given number is prime or not (12). Given two 

numbers P and Q to RSA system, this 

algorithm finds out they are prime or not. The 

steps involved in the algorithm are, 

1. Find integers k, q such that, k > 0 and q is 

odd, so that (n-1)=2
k
q 

2. Select a random integer a, 1 < a < n1 

3. If a
q
 mod n = 1 then return ("may be 

prime") 

4. For j = 0 to k 1 do 

5. If (a
2jq

 mod n = n-1) 

6. Thenreturn(" may be prime ") 

7. Return ("composite") 

 

Euclidean Algorithm 

The Euclidean Algorithm [13] is used for 

finding the GCD of two integers quickly. In 

mathematics, the Euclidean algorithm, or 

Euclid's algorithm, is a method for computing 

the greatest common divisor (GCD) of two 

numbers efficiently, the largest number that 

divides both of them perfectly. 

 

In RSA the Euclidean algorithm is used to 

compute value of E because the value of E 

must be relatively prime to Z, i.e. GCD (E, Z) 

=1. 

 

Euclidean Algorithm to compute GCD (a, b) 

is: 

Euclid (a, b) 

1. if (b=0) then 

2. return a; 

3. else return Euclid(b, a mod b); 

 

Extended Euclidean Algorithm 

It is an extension to Euclidean algorithm that 

not only computes GCD of integers a and b, 

but also the integers x and y such that, 

ax+by=gcd(a,b). 

 

In RSA the extended Euclidean algorithm [13] 

is used to compute the value of D from the 

value of E and Z because D= E1 mod Z. The 

extended Euclidean algorithm is shown next, 

EXTENDED EUCLID (m, b) 

1. (A1, A2, A3) = (1, 0, m); (B1, B2, B3) = 

(0, 1, b) 

2. if B3 = 0 return A3 = gcd(m, b); no 

inverse 

3. if B3 = 1 

4. return A3 = gcd(m, b); b2 = b1 mod n 

5. Q = A3 div B3 

6. (T1, T2, T3) = (A1 Q B1, A2 Q B2, A3 Q 

B3) 

7. (A1, A2, A3) = (B1, B2, B3) 

8. (B1, B2, B3) = (T1, T2, T3) 

9. go to step 2 

 

Fast Exponentiation Algorithm 

This algorithm is used to compute the modular 

exponentiation functions. For example if we 

need to compute the value of c=a
n
 then write 

the exponent n in binary. Read the binary 

representation from left to right, starting with 

the second bit from the left. Start with the 

number a, and every time you read a 0 bit, 

square what you have got. Every time you read 

a 1 bit, square what you have got, multiply by 

a. In RSA this algorithm is used for encryption 

and decryption process i.e. for converting 

plain text to cipher text and vice-versa. 

 

Left to Right Binary Exponentiation 

Algorithm: 

Input: m, e and n. 

Output: c = me mod n, e > 1 

 

Initialization c = m if ek-1 = 1 else c=1 

for j = k -1 down to 0 do 

c = c * c mod n 

if ( e[j] = = 1) then 

c = c * m mod e 

end for 

return c 

 

CRT-RSA 
Chinese Remainder Theorem (CRT) is very 

effective method to speed up the decryption 

process for computation of the plain text or the 

original message from the cipher text when 

implemented in RSA cryptosystem. In RSA 

cryptosystem, N = p * q. By computing plain 

text M=C
d
 mod N, here one modular reduction 

is of size N. Using CRT in RSA cryptosystem, 

private key(d) is divided into dp and dq. By 

computing m1=C
dp

 mod p and m2=C
dq

mod q, 

m can be calculated by later merging m1 and 
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m2.Here two modular reduction is of size 

N1=2. Hence, CRT is used in RSA to speed up 

the decryption process to get the plain text.  

 

Implementation of CRT based RSA  

The value of private exponent is very large as 

compared to public exponent. As a result, 

encryption of message will be much faster 

than decryption method. The value of d, the 

secret exponent cannot be made short. 

Therefore, CRT is used in RSA to boost up the 

decryption process.  

 

Steps of implementation of CRT in RSA are as 

follows: 

1. Let p and q be very be two large primes of 

nearly the same size. 

2. Compute N = p * q. 

3. Compute Euler's Totient Function, z = (p-

1)*(q-1). 

4. Compute Public Key, e such that greatest 

common divisor, gcd (z, e) = 1. 

5. Compute Private Key, d by applying d=e
-1

 

mod z. 

6. Given message M such that Cipher text, C 

= M
e
 mod N. 

7. Compute dp = d mod (p-1) and dq = d mod 

(q-1) respectively. 

8. Compute pinv= p
-1

 mod q and qinv = q
-1

 mod 

p respectively. 

9. Compute signature, m1 = C
dp

 mod pand 

signature, m2 = C
dq

 mod q respectively. 

10. Compute M by the following method: 

 

(Garner's optimization method) 

M =((qinv(m1-m2)modp)*q) + m2 if m1 > m2 or 

M=((qinv(m1-m2+p)modp)*q) + m2 if m1 <= 

m2 

(Gauss combination method) 

M=((m1*q*qinv)+(m2*p*pinv))modN. 

 

In simple RSA, if the decryption process takes 

N times, than in CRT-RSA it will take N/2 

times to compute the plain text because m1=c
dp

 

mod p and m2=c
dq

 mod q runs parallel at the 

same time and we divide the private key (d) 

into two equal parts (dp and dq). As a result, 

plain text is computed very fast in CRT based 

RSA as compared to simple RSA. 

 

THE MIST ALGORITHM 
MIST is an effective randomized 

exponentiation algorithm for opposing power 

analysis attacks. The MIST algorithm 

produces haphazardly extraordinary expansion 

chains for performing out a specific 

exponentiation. The formation of long 

expansion chains makes it outlandish for an 

assailant to attack. It was first presented by 

Colin. D. Walter [14]. 

 

MIST involves the use of a random divisor 

which is not known to anyone including the 

attacker. This random divisor makes it more 

randomised and efficient thus preventing it 

from side channel attack, to be precise Power 

Analysis Attack. The choice of divisor set and 

addition chains for each residue R are made 

with security and efficiency. In case of RSA 

the main cost of iteration is only in the 

computation of Start M
d
. The set of divisors 

used in MIST are 2, 3, 5. 4 is not used here 

because it produces very long addition chains 

in the calculation of Start M
D
 and M

E
. To 

achieve a faster exponentiation very long 

addition chains are excluded but they might 

improve security.  

 

MIST Algorithm 

{Before proper re-scheduling of addition chain 

choices} 

{Pre-condition: E >0} 

RemE: =E; 

StartM: =M; 

ResultM: =1; 

While RemE > 0 do 

Begin 

Choose a random "divisor" D; 

R: = RemE mod D; 

If R ≠ 0 then 

ResultM: = StartM
R
 x ResultM; 

StartM: = StartM
D
; 

RemE: = RemE div D; 

{Loop invariant: ME = StartM
R
 x ResultM} 

End; 

 

{Post-condition: ResultM = M
E}

 

 

PROPOSED WORK 
Simple as well as differential power analysis 
attacks have been among the most efficient 
and devastating attacks on some RSA-based 
devices. Many resisting techniques have been 
proposed that could prevent these attacks by 
securing the exponentiation algorithm which is 
generally targeted. Many countermeasures 
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have already been proposed against these 
kinds of attacks, still it is found that these 
counter measures further have got some loop 
holes which attracts the attackers to perform 
cryptanalytic attacks. 
 
In RSA system during encryption process, 
while computing the cipher text, i.e. C=M

e
 

mod N is vulnerable to power analysis attacks. 
But an exponentiation is basically a sequence 
of multiplications and squaring, but this 
sequence may reveal exponent bits to an 
attacker on an unprotected implementation. In 
the case of an exponentiation, the original 
simple power analysis is based on the fact that, 
if the squaring operation has a different pattern 
than a multiplication, the secret exponent can 
be directly read on the curve. For instance, in 
algorithm Left-to-Right Binary 
Exponentiation, a 0 exponent bit implies a 
squaring to be followed by another squaring, 
while a 1 bit causes a multiplication to follow 
a squaring [15]. 
 
So, we have proposed a modified RSA system 
using MIST algorithm, which is a randomized 
exponentiation algorithm and CRT based RSA 
with MIST. 

MODIFIED RSA WITH MIST 
The MIST algorithm generates irregular 

addition chains for performing a specific 

exponentiation. This means that power attacks 

which require averaging over a large number 

of exponentiation power traces becomes 

impossible. Moreover, attacks which are based 

on perceiving repeated use of the same pre-

computed multipliers during an individual 

exponentiation are also additionally infeasible. 

 

The algorithm is especially appropriate to 

cryptographic operations which rely upon 

exponentiation and which are actualized in 

installed frameworks, for example, smartcards. 

It is more proficient than the ordinary square-

and-multiply operations [14]. 

 

When we apply MIST during the computation 

of modular exponentiation in decryption 

process of RSA, the power traces generated 

may be in randomized state in compare to 

RSA using left to right exponentiation 

algorithm. Hence attacker may not be able to 

guess the secret information. Figure 1 below 

shows the modified RSA algorithm with MIST 

incorporated with it. 

 

 
Fig. 1: Modified RSA with MIST. 
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MODIFIED CRT-RSA WITH MIST 
In RSA-CRT, it is a common practice to 

implement the Chinese Remainder Theorem 

during decryption of cipher text. It results in a 

much faster decryption than simple modular 

exponentiation [16]. But in CRT based RSA 

also there remains a loop hole in computation 

of message signatures m1 and m2 (i.e. m1=c
dp

 

mod p and m2=c
dq

 mod q). These two 

exponentiation operations may be vulnerable 

to power analysis attacks. So, we may use 

MIST a randomized exponentiation algorithm 

to secure the system. Figure 2 below shows the 

modified CRT-RSA with MIST incorporated 

in it. 

 

EXPERIMENTAL RESULTS  
We have implemented Simple RSA, RSA with 

CRT, RSA with MIST and RSA with CRT 

using MIST in two different platforms Mupad 

(Matlab Tool) and VHDL. The motive of 

implementing these algorithms in Mupad are 

to analyze the execution time for different 

messages so that we can compare the 

performance of these algorithms with each 

other based on their execution time. 

 

Implementation in Mupad 

In Mupad (Matlab Tool) implementation we 

have computed the execution time of different 

message sets using various 8 bit and 16 bit 

keys in a workstation of the following 

specification: 

 

Table 1: Working Environment. 
Model HP Z230 Tower Workstation 

RAM 8.00 GB 

Processor Inter(R) Xeon(R) CPU-E3-1225 v 

@3.20GHz 

System Type 64-BIT Operating System 

 

 
Fig. 2: Modified CRT-RSA with MIST. 
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Two test benches have been used for testing 

the correctness and performance of our work. 

We have used PKCS standard benchmark to 

check the correctness of our work. We have 

tested with key bits from 1024 to 1030 bits 

with different plain texts. However, for 

analysing the performance of the work we 

have designed our own test bench of 8 bits and 

16 bits (Table 1). The same benchmark was 

also used for VHDL. This benchmark was 

created by testing them individually for the 

RSA encryption technique implementing all 

the algorithms. Only after detailed analysis, 

they were later used in our proposed work. 

Tables 2 and 3 give details about our test 

bench. In Table 2, test bench for 8 bits key has 

been given and in Table 3, test bench for 16 

bits key has been given. Each table has 10 

different sets of p, q, n, z, e and d. For each 

such set we tested for 5 different plain texts in 

encryption and the result in decryption. 

 

The 8 bits key test bench were used for both 

RSA with MIST and CRT-RSA with MIST. 

However, 16 bits test bench was used only for 

CRT-RSA with MIST, as RSA MIST 

consumed a lot of time. 

 

During our simulation we have also computed 

the average computation time of our proposed 

methods. This time was the mean of the 

computation times for each plain text in our 

test bench. For 8 bit key size we have 

compared conventional RSA and CRT-RSA 

with our both proposed RSA with MIST and 

CRT-RSA with MIST. The results are shown 

in Table 4 which depicts that RSA with MIST 

had a higher computation time then all the 

other three approaches however CRT-RSA 

with MIST's computation time laid between 

the simple RSA and CRT-RSA.  

 

For 16 bit key the average computation time of 

RSA with MIST was extremely high so has 

not been included in the results. However, 

CRT-RSA with MIST showed a larger 

computation time than the simple RSA and 

CRT-RSA. The results have been shown in 

Table 5. The computation time cost was due to 

the exponentiation calculation in the MIST. 

 

Table 2: Test Sets for 8 Bit Implementation. 

P Q N Z E D 

241 199 47959 47520 29 13109 

163 197 32111 31752 103 3391 

229 167 38243 37848 61 22957 

131 157 20567 20280 251 5171 

233 251 58483 58000 323 5387 

131 137 17947 17680 103 14242 

139 149 20711 20424 103 19171 

151 157 23707 23400 101 130901 

163 167 27221 26892 103 20887 

173 179 30967 30616 109 11797 

 

Table 3: Test Sets for 16 Bit Implementation. 

P Q N Z E D 

32999 33181 1094939819 1094873640 493 1010481757 

32993 33203 1089527839 1089461024 243 546972603 

33161 33203 1101044683 11009783320 539 526998899 

33151 33199 1100580049 1100583700 1019 964434497 

33053 33199 1095673897 1095607696 999 545062087 

32771 32779 1074200609 107435060 119 857502779 

32783 32789 1074921787 1074853216 721 994908233 

32797 32801 10757743397 10757008800 283 22806547 

32803 32831 1076955293 1076889660 263 217015787 

32833 32839 10782028887 1078137216 233 828268505 
 

Table 4: Computation Time for 8 Bit Implementation. 

Simple RSA RSA-CRT RSA-MIST CRT-RSA-MIST 

0.21216136 0.21216136 0.29320474 0.18632126 

0.1716011 0.16224104 0.2028013 0.173201 

0.2148023 0.17336156 0.25056226 0.22328688 

0.22208258 0.20428208 0.23744324 0.21696316 

0.25694298 0.17196266 0.286049108 0.245464394 

0.38336306 0.29240373 0.520005 0.4612047 

0.27929238 0.23712352 0.47328638 0.33304534 

0.40664494 0.23592482 0.48744774 0.33576596 

0.26848558 0.18464544 0.33552892 0.23649858 

0.28024614 0.20304584 0.39064994 0.246073 



 

Implementation of RSA and CRT-RSA                                                                                        Mahanta and Khan 

 

 

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved                                                              Page 10 

Figure 3 shows the plot of average 

computation time versus the sets of test bench 

for 8 bit key. Similarly, plot 4 shows the 

average computation time versus the sets of 

test bench for 16 bit key (Figure 4). These 

graphs can clearly show the average 

computation time for simple RSA, CRT- RSA 

and our both proposed methods. 

 

IMPLEMENTATION IN VHDL 
VHDL stands for VHSIC (Very High Speed 

Integrated Circuits) Hardware Description 

Language. An advanced framework in VHDL 

comprises of an outline element that can 

contain different elements that are then 

considered parts of the best level substance. 

Every substance is displayed by an element 

revelation and an engineering body. 

 

We have used Xilinx ISE 9.2 version for the 

implementation. The main motive of 

implementation in VHDL was to get the power 

consumptions details during various processes 

in different algorithms, so that we can 

compare the randomness of our proposed 

algorithm with Simple RSA and RSA-CRT. 

However, due to lack of adequate equipments 

we could not obtain our desired results. So, we 

only present a model of the VHDL modules. 

Figures 5 and 6 show the VHDL module for 

RSA and CRT- RSA. 

 

Table 5: Computation Time for 16 Bit 

Implementation. 
Simple RSA RSA-CRT CRT-RSA-MIST 

0.13728088 0.1248008 0.2964019 

0.13104084 0.11856076 0.45864294 

0.12168078 0.11232072 0.31824186 

0.15152092 0.11856076 0.27768178 

0.14694572 0.12792082 0.20904134 

0.12168078 0.11232072 0.37128238 

0.11232072 0.10608068 0.26520166 

0.12344074 0.1148008 0.24336156 

0.1152007 0.09816086 0.28376246 

0.12580078 0.1128008 0.26872262 

 
 

 
Fig. 3: Average Computation Time for 8 Bit Key. 

 

 
Fig. 4: Average Computation Time For 16 Bit Key. 
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Fig. 5: VHDL Module For RSA. 

 

 
Fig. 6: VHDL Module for CRT – RSA. 

 

 
Fig. 7: VHDL Output for RSA And CRT-RSA. 
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CONCLUSION 
In this paper we have implemented two 

modified RSA implementations, RSA with 

MIST and CRT-RSA with MIST. We aimed to 

associate MIST in RSA implementation in 

order to provide randomization so that it can 

resist power analysis attacks (Figure 7). From 

our experimental results we can conclude that 

RSA with MIST provide additional security 

but with a huge time cost. But, CRT-RSA with 

MIST can be very useful both from 

performance as well as security perspective. 

We have also designed the VHDL modules for 

our proposed approaches. But calculating the 

actual power consumption details remains as 

the future work for our proposed methods. 
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