

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 1

Journal of VLSI Design Tools & Technology
ISSN: 2249-474X (Online), ISSN: 2321-6492 (Print)

Volume 7, Issue 3

www.stmjournals.com

Implementation of RSA and CRT-RSA with MIST to

Resist Power Analysis Attacks

Hridoy Jyoti Mahanta*, Ajoy Kumar Khan
Department of Computer Science and Engineering, Assam University, Silchar, Assam, India

Abstract
Security has transformed out into a fundamental range of research in space of computer

science. With the advancement of side channel attacks, all the private and public key

cryptosystems accessible worldwide has been discovered defenceless. Accordingly there has

broughtdireness up in planning resisting systems against such unpredictable attacks. Power

analysis attacks, which is the most famous side channel attacks has turned out to be a test for

the majority of the normal cryptosystems like advanced encryption standard (AES), data

encryption standard (DES), Rivets-Shamir-Adleman (RSA), ECC and so forth. MIST is an

algorithm which was intended for processing exponentiation. As the most critical operation of

RSA is the modular exponentiation for encryption and decryption, MIST can assume an

imperative part in planning modified RSA to counteract power analysis attacks. We have

extended our work CRT-RSA (Chinese Remainder Theorem–Rivets-Shamir-Adleman) which is

more widely used in computation. The analysis results shows that modified RSA can perform

better in computing RSAespecially when CRT is has been used. The results have also been

verified using VHDL (very high speed integrated circuits).

Keywords: Power analysis attacks, cryptosystems, RSA, RSA-CRT, MIST, VHDL

*Author for Correspondence E mail: hridoy69@gmail.com

INTRODUCTION
Security has been the most important
component in technological scenario as it is
responsible for securing all information passed
through networked computers. Cryptographic
algorithm has been widely used in network
computers for secure transactions of secret
information. In any case, regardless of these
different security techniques presented by
various cryptosystems, attacks always have
been effective to discover a loophole to break
the security of these systems. Side-channel
attacks (SCA) are firmly identified with the
presence of physically noticeable changes
caused by the execution of operations in show
microelectronic devices. Side channel attacks
are those attacks that depend on side channel
information. Side channels Information are
those data that can be recovered from the
microelectronic devices with no intrusion into
the device. Presently the cryptographic devices
are under the potential threat of side channel
attacks.

Side channel attacks are effective techniques

to recoup delicate information of

cryptographic gadgets. In cryptography, a

side-channel attack is a sort of attack that in

view of information picked up from the

physical execution of a cryptosystem, as

opposed to savage power or hypothetical

shortcomings in the algorithms. For case,

timing information, control utilization,

electromagnetic releases or even stable can

give an additional wellspring of information,

which can be misused to break the framework

some side channel attacks require specialized

learning of the inward operation of the

framework. Attackers use some or all of these

side channel information along withother

cryptanalytic techniques to reveal the secret

key that usingby the device. Side channel

analysis techniques are of high concern

because these attacks can be mounted quickly.

Power analysis attacks have been exhibited as

a standout amongst the most intense attacks

for most direct execution of symmetric and

asymmetric ciphers. Power analysis attacks

depend on the examination of power

utilization of a cryptographic device.

Execution of cryptographic operations devours

control, these power utilization goes about as

side channel information. Power utilization of

Implementation of RSA and CRT-RSA Mahanta and Khan

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 2

a device relies upon information it procedures

and operations it performs. Cryptographic

algorithms, for example, advanced encryption

standard (AES), data encryption standard

(DES), Rivets-Shamir-Adleman (RSA) and so

forth is actualized in cryptographic devices.

Execution these algorithms in the devices

consumes power, this power consumption acts

as side channel information. Attackers trace

power consumption of a device on an

oscilloscope and analyses the power traces to

find out the secrete key of a device. Power

analysis attacks are further divided into simple

power analysis (SPA) and differential power

analysis (DPA) respectively [1]. SPA uses few

traces of power consumption to reveal and the

cryptosystem and few key bits, whereas DPA

uses a large number of power traces and make

statistical analysis of them to reveal all the key

bits by correlating them with some

hypothetical power traces.

DPA attacks worked in light of the fact that

the power utilization of cryptographic device

was reliant on the halfway estimations of the

executed cryptographic algorithms. The

objective of countermeasures is evacuating

this reliance. The main idea of

countermeasures against DPA attacks is to

make the power consumption of the

cryptographic device independent of the

intermediate values of the executed

cryptographic algorithm [1]. The

countermeasures against DPA attacks that

have been distributed so far can basically be

classified into two gatherings i.e.

randomization and masking. The fundamental

thought of stowing away is to expel the

information reliance of the power

consumption, whereas concept of masking is

to randomize the intermediate value that is

proceed by cryptographic device.

In this paper, we have used the MIST

algorithm which computes modular

exponentiation using some random number,

with RSA and CRT-RSA to examine the

effects on resisting power analysis attacks. The

rest of the paper has been organized in

following sections. Section 2 gives a detail on

the background of how power analysis is

resisted with some related works. Section 3

presents RSA and CRT-RSA in details. The

MIST algorithm has been briefly discussed

followed by our proposed work and lastly

shows the result and finally a conclusion has

been formulated.

BACKGROUND AND RELATED

WORKS
The main reason behind power analysis
attacks is that almost all the cryptographic
devices are built with CMOS. The CMOS has
a special property that it power consumption
depends on the operations it performed as well
as the data on which they were performed.
Countermeasure expels the information
reliance of the power consumption. This
implies either the execution of the algorithm is
randomized or the power consumption
qualities of the device are changed such that
an aggressor can't without much of a stretch
discover information reliance. Power analysis
attacks works in light of the fact that the power
utilization of cryptographic devices relies upon
middle estimations of the executed
cryptographic calculations. The objective of
countermeasures is to make the power
utilization of cryptographic devices free of the
intermediate values and autonomous of the
operations that are performed [1]. There are
basically two ways to deal with accomplish
this autonomy. The main approach is to
fabricate devices such that the power
consumption is arbitrary. This implies in each
clock cycle arbitrary measure of energy is
devoured. The second approach is to build
devices that consume an equal amount of
power for all operations and for all data
values. Hence, equal amounts of power are
consumed in each clock cycle.

Masking could be achieved by randomizing
the intermediate values that are processed by
the cryptographic device. An advantage of this
approach is that it can be implemented at the
algorithm level without changing the power
consumption characteristics of the
cryptographic device. At the end of the day,
masking permits make the power consumption
autonomous of the middle of the road esteems,
regardless of the possibility that the device has
information subordinate power consumption
[1].

The least complex approach to conceal variety

is to make the calculation entirely steady time,

Journal of VLSI Design Tools & Technology

Volume 7, Issue 3

ISSN: 2249-474X (Online), ISSN: 2321-6492 (Print)

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 3

for all conceivable mystery examples or

stowing away inward state, so that the attacker

can't reproduce inner calculations any more.

This is finished by breaking the connection

between the power consumption of the devices

and the prepared information esteems.

Consequently, cryptographic devices that are

ensured by stowing away execute

cryptographic calculations similarly as

unprotected devices. In specific, they compute

a similar intermediate values. However, the

concealing countermeasures make it

troublesome for an attacker to discover

exploitable data in control traces [1].

The most broad strategy to counter SCA

attacks is to randomize information that may

spill through different side channels, for

example, power consumption, electromagnetic

radiation, or execution time. The issue is to

ensure that an assailant may acquire just

irregular data, and in this way can't increase

any helpful learning about the genuine

beginning or potentially intermediate

information associated with computations. In

instance of elliptic curve cryptosystem,

randomized projective directions technique is

a down to earth countermeasure against SCA

attacks in which an attacker can't anticipate the

presence of a particular esteem on the grounds

that the directions have been randomized [1].

Many works on resisting power analysis

attacks on RSA appears in literature. All these

works are based on the approaches discussed

below. In 2004 Mamiya et al. [3] presented the

concepts of using random initial points in

computations which could start computations

are at random points every time. This could

actually randomize the operations in any

computations. In 2005, Kim et al. [4]

presented an approach that could immune

RSA from power analysis attacks. In their

computation they used a random number

which was first multiplied and then the inverse

of was computed to remove the effect of the

random number. They also proposed an

improve countermeasure against SPA and

DPA in order to avoid reverse computation of

modular exponentiation [5]. It is not necessary

to compute an inverse of the random number r.

It is very important to speed up the RSA

computation and implementation. From this

point of view, their proposed countermeasure

is a more efficient and general method than

Mamiya’s [3] countermeasure. This method

could be extended to ECC public key

cryptosystems which avoid the subtraction

computation.

In 2006, Yi Wang [6] pointed out the

disadvantage of Kim’s improved

countermeasure. The initial value of Kim's

countermeasure for RSA is T [00] = 1 which

will cause the possible attacks. Power

consumption of modular multiplication of T

[00] = 1 will have a big difference compared

with other values. When the result change

from ‘0’ to ‘1’ causes power, therefore, it is

obvious to tell the difference between the disi =

0 with other values. Yi Wang proposed an

enhanced countermeasure in view of Kim's [4,

5] which keeps away from this sort of

conceivable attack and turn around

computation of particular exponentiation for

RSA public key cryptosystems in the

meantime. The essential thought of proposed

countermeasures was to change the underlying

estimations of T[00] which could release the

sensitive data in Kim's approach. Their

approach demonstrated the modified Kim's [5]

countermeasure for RSA public key

cryptosystems [6].

In 2006, Kaminaga et al. [7] proposed a

conventional method where the exponent d

was blinded and evaluated as the private key.

The attackers can extract d because it could be

implemented with a single execution result. To

prevent this, they propose a countermeasure

that further divides the exponent and

randomizes the processing order.

Exponent and the input text performed in the

conventional method are continued in the

proposed method. The proposed

countermeasure method was based on dividing

the secret exponent d into two non-negative

integers d0 and d1. In other words, the secret

exponent is divided into the sum of two

numbers as in d = d0 + d1. S0= y
d0

 mod N, S1 =

y
d1

 mod N are set, and S0 * S1 mod N = y
d
 mod

N is obtained. d0 is a random number less than

d. To randomize the processing order of S0 and

S1, the random number v having L(d) bits is

used. Each bit of the value of v is read from

Implementation of RSA and CRT-RSA Mahanta and Khan

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 4

the most significant bit (MSB) side. If 0, S0 is

calculated. If 1, S1 is calculated.

In 2007, Santosh Ghosh et al. [8] have

proposed a secure RSA implementation to resist

timing and SPA attacks. They showed some

implementation techniques of RSA which were

insecure against different power analysis

attacks. These implementations could leak the

secret information while processing. They

explained how simple square-multiply

algorithm for RSA implementation was

insecure against simple power analysis attacks.

In this implementation, the exponent of

plaintext was converted in binary values and

then left to right binary exponentiation method

was computed. Every single bit of exponent

was represented by k. When the exponent k = 1

then square operation was followed by multiply

operation, otherwise only square operation was

performed for corresponding bit of exponent k.

It was an insecure design of RSA because from

the power traces the adversaries could easily

find the '1's and '0's bit values of the processed

exponent k. Finally they proposed square and

multiply always algorithm to resist timing and

SPA attack.Here, the square operation was

followed by multiplication operation at every

round i.e. for every bit of exponent k. This was

a secured implementation of RSA against SPA

and timing attacks as adversaries could not find

out the position of 1's and 0's in power traces.

Ji-fang et al. [9] had proposed a new masking

technique to resist against DPA attacks in year

2009.In their work, first plaintext and exponent

were masked and then processed left to right

binary modular exponentiation model on

masked plaintext and exponent. During each

round, some inefficacy algorithm was run in

between squaring and multiplication operation

three times. At the end, the masked cipher text

was unmasked to get the real cipher text.

In 2012 Yin [10] propose a binary modular

exponentiation RSA countermeasure keeping in

mind the end goal to safeguard against the

comparative power analysis by partitioning the

private key e into nirregular parts and arbitrarily

picking one of the parts to do one unit operation

every determination till the secluded

exponentiation of all parts are completed. The

efficiency and security of their algorithm can be

improved even more by adopting the parallel

computing architecture [10]. The bit length of e

is noted as le so e = (ele; ; e2; e1)2. According to

the binary method, the calculation of M
e
 mod N,

includes le time for loops. Such for a loop has

defined as a unit operation of the modular

exponentiation. The basic conception of their

defence module is randomizing the

computational process of the exponentiation

algorithm. They first divide the private key e

into random parts, and then randomly choose

one of the parts to do one unit operation each

selection till the modular exponentiations of all

parts are completed, and finally calculate the

modular multiplication of all the modular

exponentiations to get the final result.

THE RSA AND CRT-RSA
The RSA cryptosystem is utilized for both

confidentiality and authentication [11]. It is the

most generally utilized public key encryption

algorithm. The premise of the security of the

RSA algorithm is that it is numerically

infeasible to factor adequately huge whole

numbers. The RSA algorithm is accepted to be

secure if its keys have a length of no less than

1024-bits.

The algorithm appears below:

Key Generation

1. Choose two very large random prime

integers: p and q

2. Compute n and z, n = pq and z= (p-1) (q-1)

3. Choose an integer e, 1 < e < z such that gcd

(e, z) = 1

4. Compute d, 1 < d < z such that ed ≡ (mod z)

 The public key is (n, e) and the private key

is (n, d)

 The values of p, q and z are private

 e is the public or encryption exponent

 d is the private or decryption exponent

Encryption: The cipher text C is computed by,

C = M
e
 mod n (1)

Decryption: The message M is computed by,

M = C
d
mod n (2)

ALGORITHMS USED IN RSA
Computation of RSA involves many other

algorithms for different reasons like testing the

primarily, computing GCD, fast computation

Journal of VLSI Design Tools & Technology

Volume 7, Issue 3

ISSN: 2249-474X (Online), ISSN: 2321-6492 (Print)

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 5

etc. The common algorithms used are

discussed below.

Rabin Miller Algorithm

The Miller-Rabin primarily test or Rabin

Miller primarily test is an algorithm for

primarily testing which determines whether a

given number is prime or not (12). Given two

numbers P and Q to RSA system, this

algorithm finds out they are prime or not. The

steps involved in the algorithm are,

1. Find integers k, q such that, k > 0 and q is

odd, so that (n-1)=2
k
q

2. Select a random integer a, 1 < a < n1

3. If a
q
 mod n = 1 then return ("may be

prime")

4. For j = 0 to k 1 do

5. If (a
2jq

 mod n = n-1)

6. Thenreturn(" may be prime ")

7. Return ("composite")

Euclidean Algorithm

The Euclidean Algorithm [13] is used for

finding the GCD of two integers quickly. In

mathematics, the Euclidean algorithm, or

Euclid's algorithm, is a method for computing

the greatest common divisor (GCD) of two

numbers efficiently, the largest number that

divides both of them perfectly.

In RSA the Euclidean algorithm is used to

compute value of E because the value of E

must be relatively prime to Z, i.e. GCD (E, Z)

=1.

Euclidean Algorithm to compute GCD (a, b)

is:

Euclid (a, b)

1. if (b=0) then

2. return a;

3. else return Euclid(b, a mod b);

Extended Euclidean Algorithm

It is an extension to Euclidean algorithm that

not only computes GCD of integers a and b,

but also the integers x and y such that,

ax+by=gcd(a,b).

In RSA the extended Euclidean algorithm [13]

is used to compute the value of D from the

value of E and Z because D= E1 mod Z. The

extended Euclidean algorithm is shown next,

EXTENDED EUCLID (m, b)

1. (A1, A2, A3) = (1, 0, m); (B1, B2, B3) =

(0, 1, b)

2. if B3 = 0 return A3 = gcd(m, b); no

inverse

3. if B3 = 1

4. return A3 = gcd(m, b); b2 = b1 mod n

5. Q = A3 div B3

6. (T1, T2, T3) = (A1 Q B1, A2 Q B2, A3 Q

B3)

7. (A1, A2, A3) = (B1, B2, B3)

8. (B1, B2, B3) = (T1, T2, T3)

9. go to step 2

Fast Exponentiation Algorithm

This algorithm is used to compute the modular

exponentiation functions. For example if we

need to compute the value of c=a
n
 then write

the exponent n in binary. Read the binary

representation from left to right, starting with

the second bit from the left. Start with the

number a, and every time you read a 0 bit,

square what you have got. Every time you read

a 1 bit, square what you have got, multiply by

a. In RSA this algorithm is used for encryption

and decryption process i.e. for converting

plain text to cipher text and vice-versa.

Left to Right Binary Exponentiation

Algorithm:

Input: m, e and n.

Output: c = me mod n, e > 1

Initialization c = m if ek-1 = 1 else c=1

for j = k -1 down to 0 do

c = c * c mod n

if (e[j] = = 1) then

c = c * m mod e

end for

return c

CRT-RSA
Chinese Remainder Theorem (CRT) is very

effective method to speed up the decryption

process for computation of the plain text or the

original message from the cipher text when

implemented in RSA cryptosystem. In RSA

cryptosystem, N = p * q. By computing plain

text M=C
d
 mod N, here one modular reduction

is of size N. Using CRT in RSA cryptosystem,

private key(d) is divided into dp and dq. By

computing m1=C
dp

 mod p and m2=C
dq

mod q,

m can be calculated by later merging m1 and

Implementation of RSA and CRT-RSA Mahanta and Khan

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 6

m2.Here two modular reduction is of size

N1=2. Hence, CRT is used in RSA to speed up

the decryption process to get the plain text.

Implementation of CRT based RSA

The value of private exponent is very large as

compared to public exponent. As a result,

encryption of message will be much faster

than decryption method. The value of d, the

secret exponent cannot be made short.

Therefore, CRT is used in RSA to boost up the

decryption process.

Steps of implementation of CRT in RSA are as

follows:

1. Let p and q be very be two large primes of

nearly the same size.

2. Compute N = p * q.

3. Compute Euler's Totient Function, z = (p-

1)*(q-1).

4. Compute Public Key, e such that greatest

common divisor, gcd (z, e) = 1.

5. Compute Private Key, d by applying d=e
-1

mod z.

6. Given message M such that Cipher text, C

= M
e
 mod N.

7. Compute dp = d mod (p-1) and dq = d mod

(q-1) respectively.

8. Compute pinv= p
-1

 mod q and qinv = q
-1

 mod

p respectively.

9. Compute signature, m1 = C
dp

 mod pand

signature, m2 = C
dq

 mod q respectively.

10. Compute M by the following method:

(Garner's optimization method)

M =((qinv(m1-m2)modp)*q) + m2 if m1 > m2 or

M=((qinv(m1-m2+p)modp)*q) + m2 if m1 <=

m2

(Gauss combination method)

M=((m1*q*qinv)+(m2*p*pinv))modN.

In simple RSA, if the decryption process takes

N times, than in CRT-RSA it will take N/2

times to compute the plain text because m1=c
dp

mod p and m2=c
dq

 mod q runs parallel at the

same time and we divide the private key (d)

into two equal parts (dp and dq). As a result,

plain text is computed very fast in CRT based

RSA as compared to simple RSA.

THE MIST ALGORITHM
MIST is an effective randomized

exponentiation algorithm for opposing power

analysis attacks. The MIST algorithm

produces haphazardly extraordinary expansion

chains for performing out a specific

exponentiation. The formation of long

expansion chains makes it outlandish for an

assailant to attack. It was first presented by

Colin. D. Walter [14].

MIST involves the use of a random divisor

which is not known to anyone including the

attacker. This random divisor makes it more

randomised and efficient thus preventing it

from side channel attack, to be precise Power

Analysis Attack. The choice of divisor set and

addition chains for each residue R are made

with security and efficiency. In case of RSA

the main cost of iteration is only in the

computation of Start M
d
. The set of divisors

used in MIST are 2, 3, 5. 4 is not used here

because it produces very long addition chains

in the calculation of Start M
D
 and M

E
. To

achieve a faster exponentiation very long

addition chains are excluded but they might

improve security.

MIST Algorithm

{Before proper re-scheduling of addition chain

choices}

{Pre-condition: E >0}

RemE: =E;

StartM: =M;

ResultM: =1;

While RemE > 0 do

Begin

Choose a random "divisor" D;

R: = RemE mod D;

If R ≠ 0 then

ResultM: = StartM
R
 x ResultM;

StartM: = StartM
D
;

RemE: = RemE div D;

{Loop invariant: ME = StartM
R
 x ResultM}

End;

{Post-condition: ResultM = M
E}

PROPOSED WORK
Simple as well as differential power analysis
attacks have been among the most efficient
and devastating attacks on some RSA-based
devices. Many resisting techniques have been
proposed that could prevent these attacks by
securing the exponentiation algorithm which is
generally targeted. Many countermeasures

Journal of VLSI Design Tools & Technology

Volume 7, Issue 3

ISSN: 2249-474X (Online), ISSN: 2321-6492 (Print)

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 7

have already been proposed against these
kinds of attacks, still it is found that these
counter measures further have got some loop
holes which attracts the attackers to perform
cryptanalytic attacks.

In RSA system during encryption process,
while computing the cipher text, i.e. C=M

e

mod N is vulnerable to power analysis attacks.
But an exponentiation is basically a sequence
of multiplications and squaring, but this
sequence may reveal exponent bits to an
attacker on an unprotected implementation. In
the case of an exponentiation, the original
simple power analysis is based on the fact that,
if the squaring operation has a different pattern
than a multiplication, the secret exponent can
be directly read on the curve. For instance, in
algorithm Left-to-Right Binary
Exponentiation, a 0 exponent bit implies a
squaring to be followed by another squaring,
while a 1 bit causes a multiplication to follow
a squaring [15].

So, we have proposed a modified RSA system
using MIST algorithm, which is a randomized
exponentiation algorithm and CRT based RSA
with MIST.

MODIFIED RSA WITH MIST
The MIST algorithm generates irregular

addition chains for performing a specific

exponentiation. This means that power attacks

which require averaging over a large number

of exponentiation power traces becomes

impossible. Moreover, attacks which are based

on perceiving repeated use of the same pre-

computed multipliers during an individual

exponentiation are also additionally infeasible.

The algorithm is especially appropriate to

cryptographic operations which rely upon

exponentiation and which are actualized in

installed frameworks, for example, smartcards.

It is more proficient than the ordinary square-

and-multiply operations [14].

When we apply MIST during the computation

of modular exponentiation in decryption

process of RSA, the power traces generated

may be in randomized state in compare to

RSA using left to right exponentiation

algorithm. Hence attacker may not be able to

guess the secret information. Figure 1 below

shows the modified RSA algorithm with MIST

incorporated with it.

Fig. 1: Modified RSA with MIST.

Implementation of RSA and CRT-RSA Mahanta and Khan

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 8

MODIFIED CRT-RSA WITH MIST
In RSA-CRT, it is a common practice to

implement the Chinese Remainder Theorem

during decryption of cipher text. It results in a

much faster decryption than simple modular

exponentiation [16]. But in CRT based RSA

also there remains a loop hole in computation

of message signatures m1 and m2 (i.e. m1=c
dp

mod p and m2=c
dq

 mod q). These two

exponentiation operations may be vulnerable

to power analysis attacks. So, we may use

MIST a randomized exponentiation algorithm

to secure the system. Figure 2 below shows the

modified CRT-RSA with MIST incorporated

in it.

EXPERIMENTAL RESULTS
We have implemented Simple RSA, RSA with

CRT, RSA with MIST and RSA with CRT

using MIST in two different platforms Mupad

(Matlab Tool) and VHDL. The motive of

implementing these algorithms in Mupad are

to analyze the execution time for different

messages so that we can compare the

performance of these algorithms with each

other based on their execution time.

Implementation in Mupad

In Mupad (Matlab Tool) implementation we

have computed the execution time of different

message sets using various 8 bit and 16 bit

keys in a workstation of the following

specification:

Table 1: Working Environment.
Model HP Z230 Tower Workstation

RAM 8.00 GB

Processor Inter(R) Xeon(R) CPU-E3-1225 v

@3.20GHz

System Type 64-BIT Operating System

Fig. 2: Modified CRT-RSA with MIST.

Journal of VLSI Design Tools & Technology

Volume 7, Issue 3

ISSN: 2249-474X (Online), ISSN: 2321-6492 (Print)

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 9

Two test benches have been used for testing

the correctness and performance of our work.

We have used PKCS standard benchmark to

check the correctness of our work. We have

tested with key bits from 1024 to 1030 bits

with different plain texts. However, for

analysing the performance of the work we

have designed our own test bench of 8 bits and

16 bits (Table 1). The same benchmark was

also used for VHDL. This benchmark was

created by testing them individually for the

RSA encryption technique implementing all

the algorithms. Only after detailed analysis,

they were later used in our proposed work.

Tables 2 and 3 give details about our test

bench. In Table 2, test bench for 8 bits key has

been given and in Table 3, test bench for 16

bits key has been given. Each table has 10

different sets of p, q, n, z, e and d. For each

such set we tested for 5 different plain texts in

encryption and the result in decryption.

The 8 bits key test bench were used for both

RSA with MIST and CRT-RSA with MIST.

However, 16 bits test bench was used only for

CRT-RSA with MIST, as RSA MIST

consumed a lot of time.

During our simulation we have also computed

the average computation time of our proposed

methods. This time was the mean of the

computation times for each plain text in our

test bench. For 8 bit key size we have

compared conventional RSA and CRT-RSA

with our both proposed RSA with MIST and

CRT-RSA with MIST. The results are shown

in Table 4 which depicts that RSA with MIST

had a higher computation time then all the

other three approaches however CRT-RSA

with MIST's computation time laid between

the simple RSA and CRT-RSA.

For 16 bit key the average computation time of

RSA with MIST was extremely high so has

not been included in the results. However,

CRT-RSA with MIST showed a larger

computation time than the simple RSA and

CRT-RSA. The results have been shown in

Table 5. The computation time cost was due to

the exponentiation calculation in the MIST.

Table 2: Test Sets for 8 Bit Implementation.

P Q N Z E D

241 199 47959 47520 29 13109

163 197 32111 31752 103 3391

229 167 38243 37848 61 22957

131 157 20567 20280 251 5171

233 251 58483 58000 323 5387

131 137 17947 17680 103 14242

139 149 20711 20424 103 19171

151 157 23707 23400 101 130901

163 167 27221 26892 103 20887

173 179 30967 30616 109 11797

Table 3: Test Sets for 16 Bit Implementation.

P Q N Z E D

32999 33181 1094939819 1094873640 493 1010481757

32993 33203 1089527839 1089461024 243 546972603

33161 33203 1101044683 11009783320 539 526998899

33151 33199 1100580049 1100583700 1019 964434497

33053 33199 1095673897 1095607696 999 545062087

32771 32779 1074200609 107435060 119 857502779

32783 32789 1074921787 1074853216 721 994908233

32797 32801 10757743397 10757008800 283 22806547

32803 32831 1076955293 1076889660 263 217015787

32833 32839 10782028887 1078137216 233 828268505

Table 4: Computation Time for 8 Bit Implementation.

Simple RSA RSA-CRT RSA-MIST CRT-RSA-MIST

0.21216136 0.21216136 0.29320474 0.18632126

0.1716011 0.16224104 0.2028013 0.173201

0.2148023 0.17336156 0.25056226 0.22328688

0.22208258 0.20428208 0.23744324 0.21696316

0.25694298 0.17196266 0.286049108 0.245464394

0.38336306 0.29240373 0.520005 0.4612047

0.27929238 0.23712352 0.47328638 0.33304534

0.40664494 0.23592482 0.48744774 0.33576596

0.26848558 0.18464544 0.33552892 0.23649858

0.28024614 0.20304584 0.39064994 0.246073

Implementation of RSA and CRT-RSA Mahanta and Khan

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 10

Figure 3 shows the plot of average

computation time versus the sets of test bench

for 8 bit key. Similarly, plot 4 shows the

average computation time versus the sets of

test bench for 16 bit key (Figure 4). These

graphs can clearly show the average

computation time for simple RSA, CRT- RSA

and our both proposed methods.

IMPLEMENTATION IN VHDL
VHDL stands for VHSIC (Very High Speed

Integrated Circuits) Hardware Description

Language. An advanced framework in VHDL

comprises of an outline element that can

contain different elements that are then

considered parts of the best level substance.

Every substance is displayed by an element

revelation and an engineering body.

We have used Xilinx ISE 9.2 version for the

implementation. The main motive of

implementation in VHDL was to get the power

consumptions details during various processes

in different algorithms, so that we can

compare the randomness of our proposed

algorithm with Simple RSA and RSA-CRT.

However, due to lack of adequate equipments

we could not obtain our desired results. So, we

only present a model of the VHDL modules.

Figures 5 and 6 show the VHDL module for

RSA and CRT- RSA.

Table 5: Computation Time for 16 Bit

Implementation.
Simple RSA RSA-CRT CRT-RSA-MIST

0.13728088 0.1248008 0.2964019

0.13104084 0.11856076 0.45864294

0.12168078 0.11232072 0.31824186

0.15152092 0.11856076 0.27768178

0.14694572 0.12792082 0.20904134

0.12168078 0.11232072 0.37128238

0.11232072 0.10608068 0.26520166

0.12344074 0.1148008 0.24336156

0.1152007 0.09816086 0.28376246

0.12580078 0.1128008 0.26872262

Fig. 3: Average Computation Time for 8 Bit Key.

Fig. 4: Average Computation Time For 16 Bit Key.

Journal of VLSI Design Tools & Technology

Volume 7, Issue 3

ISSN: 2249-474X (Online), ISSN: 2321-6492 (Print)

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 11

Fig. 5: VHDL Module For RSA.

Fig. 6: VHDL Module for CRT – RSA.

Fig. 7: VHDL Output for RSA And CRT-RSA.

Implementation of RSA and CRT-RSA Mahanta and Khan

 JoVDTT (2017) 1-12 © STM Journals 2017. All Rights Reserved Page 12

CONCLUSION
In this paper we have implemented two

modified RSA implementations, RSA with

MIST and CRT-RSA with MIST. We aimed to

associate MIST in RSA implementation in

order to provide randomization so that it can

resist power analysis attacks (Figure 7). From

our experimental results we can conclude that

RSA with MIST provide additional security

but with a huge time cost. But, CRT-RSA with

MIST can be very useful both from

performance as well as security perspective.

We have also designed the VHDL modules for

our proposed approaches. But calculating the

actual power consumption details remains as

the future work for our proposed methods.

REFERENCES
1. Mangard S. et al. Power analysis attacks:

Revealing the secrets of smart cards,

Springer Science Media House. 2008; 31.

2. Mahanta HJ et al. Information System

Design and Intelligent Application,

Springer. 2015; 2: 349–358 p.

3. Mamiya H. et al. CHES 2004. LNCS

3156. Springer-Verlag, 342–256p.

4. Kim CK et al. International Conference

on Computational Science and its

Application, Springer Berlin Heidelberg,

2004; 150–158p.

5. Kim CK. et al. IACR Cryptology ePrint

Archive 2005; 22.

6. Wang Y et al. IEEE Asia Pacific

Conference on Circuits and Systems,

2006.

7. Kaminaga M et al. Electronics and
Communications in Japan (Part III:
Fundamental Electronic Science), 2006;
89(8): 10–20p

8. Ghosh S. IEEE Region 10 Conference
TENCON, 2007

9. Jin J et al. Fifth International Conference
on Information Assurance and Security,
2009; 2.

10. Yin X et al. IEEE International
Conference on Intelligent Control,
Automatic Detection and High-End
Equipment, 2012.

11. Rivest RL et al. Communications of the
ACM, 1978; 21(2): 120–126p

12. Arnault F. Mathematics of Computation,
1995; 64(209): 355–361p.

13. Stallings W. Cryptography and Network
Security, 2006. Pearson Education India

14. Colin D. Topics in Cryptology CT-RSA,
2002. Springer Berlin Heidelberg. 53–66p.

15. Ha J. et al. Journal of Internet Services
and Information Security (JISIS), 2014;
4(4): 38–51p.

16. Shinde G. N. et al. International
Conference on Computational
Experimental Engineering and Sciences,
2008; 5(4).

Cite this Article
Hridoy Jyoti Mahanta, Ajoy Kumar Khan.

Implementation of RSA and CRT-RSA

with MIST to Resist Power Analysis

Attacks. Journal of VLSI Design Tools &

Technology. 2017; 7(3): 1–12p.

