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Abstract 
Rainfall-runoff process is purely nonlinear and varies spatially as well as temporally. 
Any hydrological model requires many parameters which represent different components 

of the process. Availability of all the parameters is difficult for any catchment and 

probabilistic generation of such type of data is impossible. Under such circumstances, 
artificial neural networks (ANNs) have proven to be a better tool to model the rainfall-

runoff process with minimum available data. The present study is to compare the 

performance of the model trained with K-means clustering algorithm and modified K-
means clustering algorithm. The potential of these two algorithms was tested by 

developing rainfall runoff models for Vamsadhara river basin located in Andhrapradesh, 
India. Results of these two models were compared with observed data of Vamsadhara 

river basin. It is shown that modified K-means clustering algorithm results are more 

generalized than K-means clustering algorithm results.  
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INTRODUCTION 
Data driven approach such as computational 

intelligence models are powerful search 

algorithms that can be used for modeling of 

hydrological phenomena. Artificial neural 

networks (ANNs) are one such technique that 

takes care of nonlinear behavior of the system. 

Numerous researchers have involved in 

devising different learning algorithms for 

ANNs according to various applications. Jalili 

and Kharaajoo [1] proposed a uniform weight 

learning algorithm to improve fault tolerance 

of neural network which improved the 

performance with lesser simulation time. 

Peralta et al. [2] coupled ANN with genetic 

algorithm for the direct encoding scheme. In 

direct encoding system, the information is 

placed in chromosomes. Golak [3] designed 

induced-weights artificial neural network to 

reduce the time-consuming task of pre-

processing the patterns. Vieira [4] proposed 

iterative neural network approach for high-

dimensional data analysis and concluded that 

it is robust, relatively simple to implement and 

it can handle many features, even if they are 

irrelevant for the solution. The state-of-the-art 

review presented by ASCE Task Committee 

[5] and Maier et al. [6] can be referred to 

know about the different ANN networks, 

transfer functions, training algorithms and real 

world applications in the field of hydrology 

and water resources. The application of back 

propagation neural network (BPANN) is 

reported in many cases [7–9]. One of the 

major problems with BPANN might get 

trapped in local minima while training. To 

circumvent this issue, radial basis function 

neural network uses clustering algorithm-

based training procedure to optimize the 

parameters which lead to global minima. In 

general, hydrological system has higher to 

lower extreme events which lead high 

dimensionality in data patterns. RBFANN has 

potential to handle high-dimensional data with 

lesser computational cost. Many of the case 

studies pertaining to RBF [10–12] consider 

model-setting parameters such as spread, 

center as a constant value. This study aims to 

change these values dynamically using real 

code algorithm to improve its generalization 
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capacity and termed as modified K-means 

clustering algorithm. The results of RBFANN 

with K-means clustering and modified K-

means clustering are compared with actual 

output on the basis of root mean square error 

(RMSE), coefficient of correlation (CC), Nash 

and Sutcliffe [13] model efficiency (CE). 

 

RADIAL BASIS FUNCTION 

ARTIFICIAL NEURAL NETWORK 
An RBFANN has input nodes (juju), function 

nodes (ii), and output nodes (kaki) in layers. Each 

layer has different number of neurons or nodes for 

its operation. Input and output neuron is problem-

dependent and is fixed. Functional layer neurons 

are assigned by the network designer based on 

behavior of network during training. The functional 

nodes consists a parameter vector called as center 

(ci) and spread σ. The performance of radial 

basis function artificial network critically 

depends upon the chosen center. In general, 

the selection of center could be through an 

arbitrary selection from the data points of the 

subset or the mean of data points of the subset 

or ordinary least square of subset or 

orthogonal least square of subset. In this 

problem, it is estimated as a mean of randomly 

generated weight vectors. 

 

The Euclidean distance is used to measure the 

distance between input vector and center. The 

Euclidean distance can be written as  

ij j id x c            (1) 

The main objective of the function is to minimize 

the Euclidean distance to get maximum function 

response from the function node. 

 

In RBFANN, Gaussian function is often used 

as an activation function 13] and it is 

represented as,  
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where, Ф(x) is the response from the 

functional node. 

 

From the function layer to output layer, the 

linear summation of weight into function 

response from the hidden layer is calculated 

initially and the Sigmoid function is used to 

project the output value in the output layer 

node. 

Sum=∑wnФ(x)                      (3) 

 

where, wn is the randomly generated weight 

vector. Finally, the output (y) is obtained from 

the following sigmoidal function. 
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In learning strategy, the weights between input 

and function layer are updated using 

unsupervised training and function layer to 

output layer uses supervised training. The 

most popular unsupervised algorithm is K-

means clustering algorithm. In clustering 

technique, it attempts to find centers for basis 

function in a manner that it reflects the 

distribution of input vectors over the input 

space. This can be accomplished in an 

unsupervised fashion using a variant of nearest 

neighbor analysis or by the Kohonen self-

organizing feature maps. The Kohonen self-

organizing feature maps are used for 

projecting patterns from high dimensional to 

low dimensional space. All connecting 

weights are adjusted by making a weight 

movement proportional to a Mexican hat 

function [14]. In supervised training a standard 

gradient descent procedure is used [15, 16]. 

 

In order to select the spread value of 

algorithm, the traditional K-means clustering 

algorithm is modified with Eq. (5). Based on 

that, the model is classified as static and 

dynamic model and can be seen from the flow 

chart in Figure 1. Static model (K-means 

clustering algorithm) uses constant spread 

value in all iterations. Dynamic model 

(modified K-means clustering algorithm) uses 

varying spread value by the weight vector and 

input patterns and is represented by Eq. (5). 
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where, wij is receptive weight of 

interconnection, M is the number of input 

vector and ci is respective center of variable. 

 

STUDY AREA AND DATA USED 
The area selected for the study is the 

Vamsadhara river basin situated in between 

wellknown Mahanadi and Godavari river 

basins of south India. The total catchment area 

to the point where the river joins the Bay of 

Bengal is 10830 km
2 

and is situated within the 

geographical coordinates of 18°15' to 19°55' 
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north latitudes and 83°20' to 84°20' east 

longitudes (Figure 2). However, the catchment 

upstream to the last gauging and discharge 

measurement station of the river at 

Kashinagar, comprising 7820 km
2
 is 

considered as the study area. The basin is 

narrow and highly undulated. A greater part of 

the catchment falls on the left side of the river. 

The temperature variation in the plains of 

basin is in between 10 to 43 °C and humidity 

during the monsoon is above 95%. The daily 

rainfall data (mm) and runoff (m
3
/s) of the 

active period (June 1 to October 31) for years 

1984 to 1989 and 1992 to 1995 were available 

and collected by India Meteorological 

Department (IMD) and Central Water 

Commission (CWC). The detailed description 

about the same study area and data used has 

been reported by Agarwal et al. [17]. 

 
Fig. 1: Flow Chart of Model Outline. 

 

 
Fig. 2: Index Map of Vamsadhara River Basin Showing Hydrological Details. 
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MODEL DEVELOPMENT 
The model is developed using K-means clustering 

and modified K-means clustering algorithm for 

Vamsadhara river catchment. The daily rainfall, 

runoff data of monsoon period (June 1 to October 

31) for the years 1984–1989 and 1992–1995 are 

used for the development of rainfall-runoff 

modeling in which data from 1984–1987 are used 

for the calibration of the model whereas the data 

from1988–1989 and 1992–1995 are used for the 

cross validation and verification of the model 

respectively. Model is trained using calibration 

data and along with calibration, the obtained 

optimized weight of the neural network is used to 

check the performance verification data. Cross 

validation data is used to avoid any over-fitting of 

the model found in cross validation. Data 

normalization is performed using the Eq. (6).  

0

max

  n

x
x

x
                                  (6) 

 

From the above equation, the data will fall from 0 

to 1. De-normalization is carried out at the output 

nodes to get the actual value. 

 

Considering different inputs, the following 

model is finalized using correlation matrix 

method and to maintain the parsimony of the 

model. 

),,,,( 3211  tttttt QQQRRfQ       (7) 

 

where, Qt represents the runoff at time (t). Rt 

represents rainfall at time (t) and t–1, t–2, t–3 

represent lagged values of inputs. 

 

PERFORMANCE EVALUATION OF 

ANN MODEL 
The performance of the proposed 

methodologies during calibration and 

validation is evaluated by performance indices 

such as root mean square error (RMSE), and 

coefficient of correlation (CC). They are 

defined as with the following equations: 
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where, iy  is the observed runoff in m
3
/s, iy  is 

the mean observed runoff in m
3
/s, iŷ  is the 

estimated runoff in m
3
/s and iy~  is the mean of 

estimated runoff in m
3
/s. 

 

RESULTS AND DISCUSSION 
K-means Clustering Algorithm 

Static RBFANN model critically depends on 

spread and center value. Change in weight controls 

the input vector to move closer to the center and 

hence producing maximum function output from 

the function layer. The weight change is carried 

out by suitable selection of learning rates. Static 

RBFANN model developed in MATLAB using 

inbuilt function newrbe, in which, the function 

newrbe takes input vectors (xjj) and output vectors 

(Ok), and the spread value is fixed constantly to the 

value of 0.8, 1.0 and 1.2. The number of iterations 

should be optimal to avoid any over fitting. In this 

study, it was found that 500 iterations were 

sufficient to train the neural network for better 

prediction. This was found using various trials 

(100 to 5000). 

 

In order to select the spread value, the network 

5-4-1, 5-12-1 and 5-20-1 are selected. The 

range of spread values is varied from 0.8 to 1.2 

and the results obtained are reported in Table 

1. Based on CC, CE and RMSE values, it can 

be very well assessed that the performance in 

calibration of all three models is almost 

equally good for spread values (0.8, 1.0, and 

1.2) considered. The cross validation and 

verification results are not good as compared 

to calibration for spread value as 0.8. A 

selection of spread value 1.0 or 1.2 could not 

be differenced based on cross validation and 

verification results. Based on literature, spread 

value of 1 as suggested by Shahsavand and 

Ahmadpour, 2005 could be a best choice to 

develop the final model. 

 

The performance of five models with different 

networks 5-4-1, 5-8-1, 5-12-1, 5-16-1 and 5-20-1 

is reported in Table 2. Based on the RMSE, CC, 

CE values, the model performance is continuously 

increased from smaller network to larger network 
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during the calibration period. The efficiency of the 

model is 82.2% for the network 5-4-1, and it is 

increased to a value of 88.5% for the network 5-

20-1. Cross validation results show that the 

performance of the models starts increasing for the 

network 5-4-1, 5-8-1, 5-12-1 and best performance 

for the model 5-16-1. The performance of the 

model 5-20-1 is deteriorated during the cross 

validation of the model. Verification results are 

showing decrease in performance by the increase 

of function nodes. The efficiency of the model 

with four function nodes is 81.6% and it is 

decreased to the value of 79.7% with 12 function 

node. For the network 5-16-1, the coefficient of 

efficiency is increased to a value 80.3%. Further 

increase of function node decreases the model 

performance. Thus, the overall performance is 

good for network 5-16-1 during calibration, cross 

validation and verification period.  

 

Modified K-means Clustering Algorithm 

In dynamic model (modified K-means clustering 

algorithm), there are two learning rates (i.e., 

function layer learning rate (α) and output layer 

learning rate (β)) used for the effective training 

with reduced computational time. Based on 

experience, the initial iterations were finalized and 

fixed nearly 2000. To ensure the proper selection 

of α from smaller network to larger network, three 

network structure (5-4-1, 5-16-1 and 5-32-1) are 

selected. The ‘α’ is varied from 0.5 to 15 and for 

the entire selected network; the model 

performance is good for ‘α’ value of 10 with 

minimum error. After fixing α value as 10, the 

emphasis has been focused towards the 

selection of learning rate (β) in output layer. 

To identify proper value of β, different values 

varying from 0.5 to 10 have been tried and 

found that the performance of model is good 

for the value of 0.5 in the entire selected 

network. To fix the optimum number of 

iterations, the system is run from lower to 

higher values of iterations and for three 

different network (5-4-1, 5-16-1 and 5-32-1). 

The number of iterations is varied from 100 to 

10000 and it can be seen that number of 

iterations required for best optimization of 

network 5-4-1 is around 1000. After 1000 

iterations, it was found that there is no 

remarkable variance as shown in Figure 3 

during calibration period. The number of 

iterations required for the best optimization of 

networks 5-16-1 and 5-32-1 are 100 to 500. 

Figure 4 shows the convergence of network 

with 516-1 with respect to efficiency of the 

model during calibration of the model. Finally, 

it can be concluded that for a smaller network 

higher number of iterations required and with 

increase in network to 5-16-1 to 5-32-1 the 

number of iterations required for best 

optimization is reduced. Based on the finding, 

five models with different network varying 5-

4-1 to 5-20-1 are developed and the results are 

reported in Table 3. 

 

Table 1: Performance of MATLAB RBFANN Model for the Varying Spread Value as 0.8 to 1.2. 

Network 

structure 

Spread 

value 

Model performance in different periods 

Calibration 

(1984–1987) 

Cross validation 

(1988–1989) 

Verification 

(1992–1995) 

RMSE 

(Abs.) 

CC 

(%) 

CE 

(%) 

RMSE 

(Abs.) 

CC 

(%) 

CE 

(%) 

RMSE 

(Abs.) 

CC 

(%) 

CE 

(%) 

 0.8 59.3 97.0 82.2 87.6 78.5 57.6 84.4 91.3 81.6 

5-4-1 1.0 62.3 89.6 83.0 88.0 79.6 57.1 76.1 93.2 88.5 

 1.2 59.3 97.0 82.2 81.4 83.2 63.4 80.1 92.9 83.4 

 

 0.8 52.9 92.7 85.9 92.5 76.9 52.7 87.7 90.3 79.2 

5-12-1 1.0 51.0 93.2 86.9 89.3 78.7 56.0 88.7 90.4 79.7 

 1.2 53.4 92.5 85.6 90.0 78.7 55.3 88.0 91.6 80.0 

 

 0.8 48.4 93.4 87.9 91.6 87.3 53.7 104.7 88.3 71.7 

5-20-1 1.0 47.6 94.1 88.5 102.3 81.9 42.2 108.3 87.8 69.7 

 1.2 49.0 93.7 87.8 88.1 83.0 59.0 100.4 87.9 73.9 
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Table 2: Performance of MATLAB RBFANN Model. 

Network 

structure 

Model performance in different periods 

Calibration 

(1984–1987) 

Cross validation 

(1988–1989) 

Verification 

(1992–1995) 

RMSE 

(Abs.) 

CC 

(%) 

CE 

(%) 

RMSE 

(Abs.) 

CC 

(%) 

CE 

(%) 

RMSE 

(Abs.) 

CC 

(%) 

CE 

(%) 

5-4-1 59.3 97.0 82.2 87.6 78.5 57.6 84.4 91.3 81.6 

5-8-1 54.4 92.2 85.0 97.9 73.1 47.0 85.8 90.9 81.2 

5-12-1 51.0 93.2 86.9 89.3 78.7 56.0 88.7 90.4 79.7 

5-16-1 49.2 93.7 87.8 82.0 94.6 62.9 87.2 91.2 80.3 

5-20-1 47.6 94.1 88.5 102.3 81.9 42.2 108.3 87.8 69.7 

 

Table 3: Performance of Dynamic RBFANN Model for Fixed α as 10, Fixed β as 0.5 and for Varying 

Iterations as 1000 to 500. 

Network 

structure 

 Model performance in different period 

Iter 

ation 

Calibration 

(1984–1987) 

Cross validation 

(1988–1989) 

Verification 

(1992–1995) 

 
RMSE 

(Abs.) 

CC 

(%) 

CE 

(%) 

RMSE 

(Abs.) 

CC 

(%) 

CE 

(%) 

RMSE 

(Abs.) 

CC 

(%) 

CE 

(%) 

5-4-1 1000 66.9 83.0 62.5 82.7 81.4 62.3 112.3 82.8 67.5 

5-8-1 1000 67.3 81.6 62.0 79.9 82.2 64.7 117.8 81.6 64.2 

5-12-1 800 52.8 87.6 76.7 79.0 81.8 65.5 111.9 87.6 67.7 

5-16-1 500 52.6 87.7 76.8 81.2 80.6 63.6 120.8 86.0 62.3 

5-20-1 500 51.6 88.2 77.7 82.1 80.2 62.8 122.2 85.2 61.4 

 

 
Fig. 3: Model Performance vs No. of Iterations (5-4-1). 

 

 
Fig. 4: Model Performance vs No. of Iterations (5-16-1). 
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The model performance in calibration 

increases with increase in function node. For a 

network (5-8-1), the performance in 

calibration is lower than cross validation but 

closely matches with verification results. It 

suggests that the model development is biased 

towards the properties of cross validation data 

set and supports the over learning of the 

model. Similarly, for a network 5-12-1, the 

performance is increased in calibration, cross 

validation and verification. From network 5-

12-1 to 5-20-1, the performance of model 

increased in calibration and decreased in cross 

validation and verification period due to the 

over learning of the network. Based on the 

results it is observed that the model 

performance is better for a smaller network 

structure. With increase in network structure, 

the performance of model increases and is best 

for model structure as 5-12-1. A further 

increase of structure improves the model 

performance in calibration but not in cross 

validation and verification period. Thus the 

increase in calibration indicates biasness leads 

over learning of model during in development 

and that is supported by higher efficiencies 

during model calibration.  

 

Model Comparison 
In static model, the smaller network needs 

lesser number of iterations and larger network 

needs more number of iterations thus reducing 

modeling time. This may be due to the static 

model’s fixed spread value and hence for the 

smaller network, the model can reach optimum 

path to activate the function node with limited 

number of iterations. If the number of function 

nodes is higher, the cluster formed will be 

high. Thus the model has to search the 

optimum path to activate the function node 

with more number of iterations. On the other 

hand dynamic model needs more iterations for 

the smaller network and less iterations for 

larger network. This can be seen that the 

dynamically changing spread value needs 

more iterations to optimize the system for the 

smaller network and less number of iterations 

for the larger network. Both models require 

same value function layer learning rate (α). 

Dynamic model needs constant β value for all 

networks. However, static model needs 

varying β as smaller network needs higher 

value and larger network needs lower value. In 

static model, the calibration results are good 

over cross validation and verification results 

for the entire network.  

 

CONCLUSIONS 
In K-means clustering algorithm, static and 

dynamic models are equally performing better 

and behave oppositely with respect to learning 

rate and iterations required for the selected 

network. Comparing the K-means clustering 

and modified K-means clustering results 

shows that K-means clustering algorithm 

results are good for the entire selected network 

during the calibration and verification period 

but not in cross validation period. From this, 

K-means clustering algorithm approach could 

not be a generalized model compare to 

modified K-means clustering algorithm. Thus 

the developed modified K-means clustering 

algorithm could be a better choice for the 

rainfall-runoff modeling of a selected basin. 
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