Open Access Open Access  Restricted Access Subscription or Fee Access

Groundwater Darcy Velocity from underground Temperature: A Focus on the City of Turin (NW Italy)

Diego Barbero, ANDREA MARONI, SANDRA PEYROT

Abstract


We report on an application of a methodology for inferring water transfer in a shallow aquifer by using analytical models of interpretation of heat transport by advection and conduction in permeable horizons. In this research, we highlight as the statistical interpretation of thermal data is a tool to obtain a quantitative estimation of the horizontal component of the Darcy velocity in a shallow aquifer. This study is based on the collection of temperature data, recorded in boreholes entirely developed within the Quaternary fluvial and outwash deposits, in which the heat transfer is affected both by advection and conduction with an important contribution, in the first several meters of the subsurface, by the seasonal climatic oscillations on temperature distribution. As an example of application of the methodology, we select the city of Turin (NW Piedmont Region) where an important shallow aquifer occurs. The shallow subsoil of Turin city consists of Pleistocene fluvial and outwash sediments with gravelly and sandy texture linked to the amount of Alpine watercourses that have modeled the major Alpine fan on which the city of Turin is built. The shallow aquifer, hosted in the Quaternary cover, shows a thickness ranging between 20 and 50 meters depth. The application of the statistical analysis to thermometric data (i.e. processing also the data with disturbances connected to seasonal fluctuations) returns values with an attenuation of the Darcy velocity. The application of the method to thermometric data only affected by seasonal fluctuation returns velocity results with differences up to 4 orders of magnitude that suggests the method is not applied; whereas, the application of the analysis of the data collected below the seasonal fluctuations depth range, returns velocity results of about 10-5–10-6 m·s-1 and thermal profiles that suggest an aquifer in perfect thermal equilibrium.

 


Keywords


Darcy velocity, shallow aquifer, thermal logs, underground temperature, Piedmont region (Italy)

Full Text:

PDF

References


Anderson M.P.; 2005: Heat as a ground water tracer. Ground Water, 43(6), 951–968.

Barbero, D., De Luca, D.A., Forno, M.G., Lasagna, M., 2016a. Groundwater vertical velocity from thermal data in aquifer recharge areas: first results on the Lanzo Fan (Piedmont, NW Italy) Geophysical Research Abstracts 18, EGU2016–7369.

Barbero, D., Bucci, A., Chiozzi, P., De Luca, D.A., Forno, M.G., Lasagna, M., Verdoya, M., 2016b. Underground temperature logs for well field monitoring. 35th National Conference of GNGTS. Lecce 22-24 November 2016, 538–543.

Barbero, D., De Luca, D.A., Forno, M.G., Lasagna, M., 2016c. Preliminary results on temperature distribution in the Quaternary fluvial and outwash deposits of the Piedmont Po Plain (NW Italy): a statistical approach. Rend Online Soc Geol It 41:272-275. doi: https://doi.org/10.3301/ROL.2016.146.

Barbero D., Bucci A., Forno M.G., Lasagna M., De Luca A.D. 2020. “Thermal model of the Piedmont Po Plain shallow aquifer (NW Italy) with the statistical temperature distribution”. Geotermics, Vol.87, p.1–9. DOI: https://doi.org/10.1016/j.geothermics.2020.101833

Bucci, A., Barbero, D., Lasagna, M., Forno, M.G., De Luca, D.A., 2017. Shallow groundwater temperature in the Turin area (NW Italy): vertical distribution and anthropogenic effects. Environ Earth Sci 76:221. doi: 10.1007/s12665–017–6546–4.

Drury M.J., Jessop A.M.; 1982: The effect of fluid filled fractures on the temperature profiles in a borehole. Geothermics 11:145–152.

Haenel R., Rybach L., Stegena L.; 1988: Fundamentals of geothermics. In: Haenel R., Rybach L., Stegena L. (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht, pp 9–57.

Reiter M.; 2001: Using precision temperature logs to estimate horizontal and vertical groundwater flow components. Water Resour. Res., 37, 663–674.

Pasquale V., Verdoya M., Chiozzi P.; 2014: Geothermics, heat flow in the lithosphere. Springer, Heidelberg, 119 pp.

Barbero, D., Bucci, A., Chiozzi, P., De Luca, D.A., Forno, M.G., Gattiglio, M., Lasagna, M., Verdoya, M., 2018. Subsurface temperature measurements for detecting tectonic dislocations. International Journal of Terrestrial Heat Flow and Applied Geothermics 1(1): 41–45. doi: https://doi.org/10.31214/ijthfa.v1i1.16.

Pasquale V., Verdoya M., Chiozzi P.; 2010: Darcy velocity and Péclet number analysis from underground thermal data. Bollettino di Geofisica Teorica e Applicata, 51, 361–371.

Verdoya M., Pasquale V., Chiozzi P.; 2008: Inferring hydro-geothermal parameters from advectively perturbed thermal logs. International Journal Earth Sciences, 97, 333–344.

Forno M.G., Lucchesi S.; 2012: La successione pliocenico-quaternaria su cui è edificata la Città di Torino e il suo significato per l’utilizzo del territorio. 1,3–9, Atti del simposio: “Geologia Urbana di Torino”. Torino, 19 ottobre 2012.

Forno M.G.; 1982: Studio geologico dell'Altopiano di Poirino (Torino). Geogr. Fis. Dinam. Quat., 5, 129-162.

Bonsignore G., Bortolami G.C., Elter G., Montrasio A., Petrucci F., Ragni U., Sacchi R., Zanella E.; 1969: Note illustrative della Carta Geologica d’Italia alla scala 1:100.000, Fogli 56 e 57 “Torino e Vercelli”, IIa ed., Serv. Geol. It., Roma.

Dela Pierre F., Piana F., Fioraso G., Boano P., Bicchi E., Forno M. G., Violanti D., Clari P., Polino R., Balestro G. and D’atri A.; 2003: Foglio 157 “Trino” della Carta Geologica d’Italia alla scala 1: 50.000. APAT, Dipartimento Difesa del Suolo, Roma.

Forno, M.G., Gattiglio, M., Comina, C., Barbero, D., Bertini, A., Doglione, A., Irace, A., Gianotti, F., Martinetto, E., Mottura, A., Sala, B., 2015. Stratigraphic and tectonic notes on the Villafranca d’Asti succession in type-area and Castelnuovo Don Bosco sector (Asti reliefs, Piedmont). Alpine and Mediterranean Quaternary 28(1):5–27.

Irace A., Clemente P., Natalicchio M., Ossella L., Trenkwalder S., De Luca D.A., Mosca P., Piana F., Polino R., Violanti D.; 2009: Geologia e idrostratigrafia profonda della Pianura Padana occidentale. La Nuova Lito Firenze, 110 pp.

Gattiglio, M., Forno, M.G., Comina, C., Doglione, A., Violanti, D., Barbero, D., 2015. The involving of the Pliocene-Pleistocene succession in the T. Traversola Deformation Zone (NW Italy). Alpine and Mediterranean Quaternary 28(1):59–70

Carraro F. (Ed.); 1996: Revisione del Villafranchiano nell’area-tipo di Villafranca d’Asti. Il Quaternario (It. Journ. Quatern. Sc.), 9 (1), 5–119.

Festa A., Dela Pierre F., Irace A., Piana F., Fioraso G., Lucchesi S., Boano P., Forno M. G., Bicchi E., Violanti D., TrenkWalder S., Ossella L., Bellardone G., Campus S., Tamberlani F.; 2009: Note illustrative del Foglio 156 “Torino Est”della Carta Geologica d'Italia alla scala 1:50.000. APAT, Agenzia per la Protezione dell'Ambiente e per i Servizi Tecnici. Dipartimento Difesa del Suolo, Roma, 1-143.

Bove A., Destefanis E., De Luca A.D., Masciocco L., Ossella L. and Tunossi M.; 2005: Assetto geoidrologico della regione Piemonte. (Cd Rom). Idrogeologia della Pianura Piemontese, Regione Piemonte.

Canavese P. A., De Luca A.D. and Masciocco L.; 2004: La rete di monitoraggio delle acque sotterranee delle aree di pianura della Regione Piemonte: quadro idrogeologico. PRISMAS: Il monitoraggio delle acque sotterranee nella Regione Piemonte, Regione Piemonte, II.

De Luca D.A., Ossella L., 2012: Assetto idrogeologico della Città di Torino e del suo hinterland. 1, 10–15, Atti del simposio: “Geologia Urbana di Torino”. Torino, 19 ottobre 2012.

Bucci A., Lasagna M., De Luca D.A., Acquaotta F., Barbero D., Fratianni S. (2020): “Time series analysis of underground temperature and evaluation of thermal properties in a test site of the Po plain (NW Italy)” Environmental Earth Sciences, 79:185 DOI: https://doi.org/10.1007/s12665-020–08920–9.


Refbacks

  • There are currently no refbacks.