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INTRODUCTION  

 

The presence of joint is common in the rock 

mass. The behavior of rock mass is largely 

influenced by the joint. So, the prediction of 

elastic modulus (Ej) of jointed rock mass is an 

imperative task in rock engineering. 

Geotechnical engineers use different empirical 

relations for determination of Ej of jointed 

rock mass [1-2]. These empirical relations 

constrain the data along a particular geometry, 

which may not always be favorable to capture 

the non-linear relations existing between 

various parameters [3]. Maji and Sitharam 

(2008)[3] successfully used artificial neural 

network (ANN) to overcome the limitations of 

the empirical relations. But, ANN model has 

some limitations such as black box approach, 

arriving at local minima, slow convergence 

speed, low generalization capability, 

overtraining problem and absence of 

probabilistic output [4–5]. As a result, 

alternative methods are needed, which provide 

more accurate model for prediction of Ej of 

jointed rock mass. 

 

This paper uses two statistical learning 

algorithms for the prediction of Ej of jointed 

rock mass. The first statistical learning 

algorithm adopts support vector machine 

(SVM), which is a novel type of learning 

machine based on statistical learning theory  

 

[6]. It provides a new, efficient and novel 

approach to improve the generalization 

performance and can attain a global minimum. 

In general, SVM has been used for pattern 

recognition problems. But recently, it has been  
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used to solve non-linear regression estimation 

and time series prediction by introducing -

insensitive loss function [6,7–9]. The details of 

SVM and its application to the geotechnical 

engineering problems can be found in 

literature [10–18].  

 

The second statistical learning algorithm uses 

relevance vector machine (RVM). RVM 

introduced by Tipping (2000)[19] produces 

sparse solutions using an improper hierarchical 

prior and optimizing over hyperparameters. 

RVM is referred to as Bayesian kernel method 

that chooses sparse basis sets using an 

“Automatic Relevance Determination” [20] 

style prior that pushes non-essential weights to 

zero. The paper has the following aims: 

 

 To examine the capability of SVM and 

RVM models for the prediction of Ej of 

jointed rock mass 

 To determine the variance of predicted 

output based on the developed RVM model 

 To develop equations for the determination 

of Ej of jointed rock mass based on the 

developed SVM and RVM models 

 To make a comparative study between the 

SVM, RVM and ANN models developed 

by Maji and Sithatam (2008)[3] 

 

DETAILS OF SVM  

 

An interesting property of SVM approach is 

that it is an approximate implementation of the 

structural risk minimization (SRM) induction  

 

principle which tells that the generalization 

ability of learning machines depends more on 

capacity concept than merely the 

dimensionality of the space or the number of 

free parameters of the loss function. This study 

uses the SVM as a regression technique by 

introducing a ε-insensitive loss function. In 

this section, a brief introduction on how to 

construct SVM for regression problem is 

presented. More details can be found 

elsewhere [21–23,10]. The ε-insensitive loss 

function can be described in the following way 

(Figure 1): 

  0yεL   for   εyxf   otherwise 

    εyxfyεL             (1)                                 

Consider the problem of approximating a set 

of data, 

    
l

y,
l

x,...,
1

y,
1

xD  , 
NRx , ry                                                                                          

                                                                (2)                              

where x is the input, y is the output, R
N
 is the 

N-dimensional vector space and r is the one 

dimensional vector space. In this study, input 

parameters are joint frequency (Jn), joint 

inclination parameter (n), joint roughness 

parameter (r), confining pressure (3) and 

elastic modulus (Ei) of intact rock. The output 

of SVM is Ej of jointed rock mass. So, in this 

study,  3,,,, nrJEx ni  and jEy  . The 

main aim in SVM is to find a function that  

gives a deviation of  from the actual output 

and at the same time is as flat as possible. Let 

us assume a linear function: 

    bw.xxf 
NRw , rb        (3)                                                                                                
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where w = an adjustable weight vector and  

b = the scalar threshold. Flatness in the case of 

(3) means that one seeks a small w. One way  

 

of obtaining this is by minimizing the 

Euclidean norm
2

w . This is equivalent to the 

following convex optimization problem: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Prespecified Accuracy and Slack Variable 
i
ξ and 

*
i
ξ  in Support Vector Regression 

            [24]. 

 

 

 

 

  
f(x) 

x 

Ly 

y-f(x) 

For prediction of Ej of 

jointed rock mass 

X = [Jn,r,3,n,Ei],y = [

Ej] 
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Minimize:
2

w
2

1
 

Subjected to:   εb
i

w.x
i

y  , i = 1, 

2,...,l 

  ε
i

yb
i

w.x  ,i = 1,2,...,l            (4)                                                                                     

In order to allow for some errors, the slack 

variables
i
ξ and 

*
i
ξ (see Figure 1) are 

introduced in (4). The formulation can then be 

restated as: 

Minimize: 








 

l

1i

*
i
ξ

i
ξC

2
w

2

1
 

Subjected to:  
i
ξεb

i
w.x

i
y  , 

i = 1, 2,...,l 

  *
i
ξε

i
yb

i
w.x  , I = 1, 2,...,l 

0
i
ξ   and 0*

i
ξ  , i = 1, 2,...,l              (5) 

The constant 0 < C < ∞ determines the trade-

off between the flatness of f and the amount 

up to which deviations larger than are 

tolerated [25]. In practice, the C value is 

selected by trial and error approach. This 

optimization problem (4) is solved by 

Lagrangian multipliers [10], and its solution 

is given by 

   







 

l

i

bx
i

x
i

1

.*
i

xf 

             

(6)

                                                                                          

 

Where  sxrxw.
2

1
b 








  and i, 

*
i

α are 

the Lagrangian multipliers. An important 

aspect is that some Lagrangian multipliers  

 

 

(i,
*
i

α ) will be zero, implying that these 

training objects are considered to be 

irrelevant for the final solution (sparseness). 

The training objects with nonzero Lagrangian 

multipliers are called support vectors.   

 

When linear regression is not appropriate, then 

input data has to be mapped into a high 

dimensional feature space through some 

nonlinear mapping [21] (see Figure 2). The 

two steps that are involved are first to make a 

fixed nonlinear mapping of the data onto the 

feature space and then carry out a linear 

regression in the high dimensional space. The 

input data is mapped onto the feature space by 

a map Ф(see Figure 2). The dot product given 

by    
ji xx  . is computed as a linear 

combination of the training points. The 

concept of kernel function 

[   














j
x.Φ

i
xΦ

j
x,

i
xK ] has been 

introduced to reduce the computational 

demand [22, 26]. So, equation (6) becomes 

written as 

  















 

l

i

b
j

x
i

xK
i

1

.*
i

xf 

      

(7)

                                                                                 

 

Some common kernels have been used such as 

polynomial (homogeneous), polynomial 

(nonhomogeneous), radial basis function, 

Gaussian function, sigmoid,  

This study uses the above SVM based model 

for predicting Ej of jointed rock mass. The data 

has been collected from the work of Maji and  
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Sitharam (2008) [3]. The complete database 

comprised of 896 datasets. Out of that, 515 

datasets are with confining case and rest with 

unconfined case. The dataset contains 

information about Jn,n,r,3,Ei, and Ej.  

 

The data has been divided into two sub-sets; a 

training dataset, to construct the model, and a 

testing dataset to estimate the model 

performance. So, for our study a set of 726 

data is considered as the training dataset and 

remaining set of 170 data is considered as the 

testing dataset. The data is scaled between 0 

and 1. This study uses radial basis function 

(  
  











 


22
exp,



T

ii

i

xxxx
xxK ) as a 

kernel function. When applying SVM, the 

optimum values of the C and width () of 

radial basis function will be determined during 

the modeling experiment. etc., for non-linear 

cases. Figure 3 shows a typical architecture of 

the SVM for Ej of jointed rock mass. 

 

DETAILS OF RVM  

 

The RVM, introduced by Tipping (2000)[19], 

is a sparse linear model. Let 

  N1,...,i,
i

t,
i

xD   be a dataset of 

observed values. Where xi = input, ti = output, 

dR
i

x   and R
i

t  . In this study, the input 

parameters are n, Jn, r, 3 and Ei. So,  

 

 

 

 

 in ErJnx ,,,, 3 . The output of the RVM 

model is Ej of jointed rock mass. Therefore, 

 jEt  . One can express the output as the 

sum of an approximation 

vector     T
N

xy,...,
1

xyy  , and zero mean 

random error (noise) vector 

 T
N
ε,...,

1
εε  where  2

n σ0,~ε N  and 

 2σ0,N  is the normal distribution with mean 

0 and variance 

. So, the output can be 

written as: 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
+ 
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- 

 

 

+ 

- 
0 

f(x) 

x 

f(x) 

Ф(x) 

For 

prediction of 

Ej of jointed 

rock mass 

X = [Jn,r,3,n

,Ei],y = [Ej] 

Fig. 2 Concept of Nonlinear Regression. 
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Fig. 3 SVM Architecture for Prediction of Ej of Jointed Rock Mass. 

 

  nεω,nxynt                                (8) 

 

where, is the parameter vector. Letus assume  

    2

nn σ,xy~x|tp N                          (9)                                                                                      

where   2

n σ,xyN  is the normal distribution 

with mean y(xn) and variance 

y(x) can be 

expressed as a linearly weighted sum of M 

nonlinear fixed basis function, 

  M1,...,j|xΦ j  : 

    ωxΦωωx;y
M

1i

ii Φ


                 (10)                                                                                             

The likelihood of the complete data set can be 

written as  

 

















2
Φwt

22σ

1
exp

2N
22π2σw,|tp 

                                                              (11) 

where  TN1 t...,tt  ,  N0 ω,...,ωω   and  

     
     

     



















nn2n1n

n22221

n12111

T

x,xKx,xKx,xK1

x,xKx,xKx,xK1

x,xKx,xKx,xK1

Φ









where  ni x,xk  is a kernel function. 

To prevent overfitting, automatic relevance 

detection (ARD) prior is set over the weights.  

   


 
N

0i
α0,|ωNα|wp 1

ii                   (12)                                                                                          

Where is a hyperparametervector that 

controls how far from zero each weight is  

  Hidden Layer of 

Inner-Product Kernels 

x1 = [J,n,r,3,Ei]1 

 
K(x, xm) 

K(x, xm+1) 

K(x, xn) 

    bw.xxf   
Output: 

Ej 

Bias b 

Input layer 

x2 = [J,n,r,3,Ei]2 

xl = [J,n,r,3,Ei]l 
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allowed to deviate [25]. Consequently, using  

Baye’s rule, the posterior over all unknowns 

could be computed given the defined 

noninformative prior distribution: 

 

     

   


 2dσ dα dw2σα,w,p2σα,,wtp

σα,w,.p2σα,w,yp
t2σα,w,p    (13)      

  

Full analytical solution of this integral [19] is 

obdurate. Thus decomposition of the posterior 

according to 

  










 t2σα,p2σα,t,wpt2σα,w,p  is used 

to facilitate the solution [27]. The posterior 

distribution over the weights is thus given by: 

     

 2σ,αtp

αw.p2σ,wtp2σα,,twp           (14)                                                                             

The resulting posterior distribution over the 

weights is the multi-variate Gaussian 

distribution 

    μ,2σα,,twp N                         (15)                                                                                              

where the mean and the covariance are 

respectively given by: 

  1T2 AΦΦσ
                               (16)                                                                                                        

tΦσμ T2  
                                       (17)                                                                                                                      

With diagonal )α,...,diag(αA N0 . 

 

For uniform hyperpriors over  and one 

needs only maximize the term  2σ,αtp : 

      dwαwp2σ,wtp2σ,αtp  

   






 





















 y
1TΦ1ΦA2σTy

2

1
exp

TΦ1ΦA2σ

2
N

2π   (18)                                 

Maximization of this quantity is known as the 

type II maximum likelihood method [27,28] or 

the “evidence for hyper parameter”(MacKay 

1992). Hyper parameter estimation is carried 

out in iterative formulae, e.g., gradient descent 

on the objective function [22]. The outcome of 

this optimization is that many elements of  

go to infinity such that w will have only a few 

nonzero weights that will be considered as 

relevant vectors. 

 

The main scope of this study is the use of 

above RVM-based model for prediction of Ej 

of jointed rock mass. In RVM, the same 

training, testing, normalization technique and 

kernel function have been used as used in the 

SVM model. The SVM and RVM models 

have been constructed by using MATLAB.  

 

RESULTS AND DISCUSSION 
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The performance of the SVM and RVM 

models has been examined by the value of 

coefficient of correlation(R). The design 

values of C,  and is 100, 0.02 and 0.7  

 

 

respectively. The number of support vector is 

201. Figure 4 shows the performance of SVM 

model for training dataset. Figure 4 also shows 

the value R is close to one. In order to evaluate 

the prediction capabilities  

 

Fig. 4 Performance of SVM for Training Dataset. 

 

 

 

 

 

 

 

 

 

Fig. 5 Performance of SVM for Testing Dataset. 

 

of the SVM model, the model is validated with 

the test set data. The performance of SVM for 

testing dataset has been shown in Figure 5.  

Figure 5 confirms that the value of R is close 

to one. So, the developed SVM model has the 

ability to predict Ej of jointed rock mass. The 

following equation (by putting 

 
  











 


98.0
exp,

T

ii

i

xxxx
xxK ,  

 

 

 

bland=0.7 in Eqn (7)) can  

be developed for the prediction of Ej of jointed 

rock mass based on the developed SVM 

model.  

  

 














 






 

726

1 98.0
exp*

ij
E

i

Tx
i

xx
i

x

i
  (19)    

Figure 6 shows the value of  *

ii    .  

 

 

 

 

 

 

 

Fig. 6 Values of  *

ii    for SVM Model. 
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For RVM model, the design value of  has 

been determined by trial and error approach.   

 

 

 

The design value of  is 0.02 and the number 

of relevance vector is 428. Figure 7 depicts the 

performance of RVM model for testing 

dataset.

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Performance of RVM Model for Training Dataset. 

 

According to the results of RVM training, 

RVM has successfully captured the 

relationship between the input parameters and 

output. Now, the performance of RVM model 

has been determined for testing dataset. The 

performance of testing  

 

dataset has been shown in Figure 8. Figure 8 

also confirms that the developed RVM model 

can be used for determination of Ej of jointed 

rock mass. The following equation is 

developed for the determination of Ej of 

jointed rock mass 

 

 

 

 

 

 

 

 

Fig. 8 Performance of RVM for Testing Dataset. 
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Figure 9 shows the value of w.  

The developed RVM model also gives 

variance of predicted data. Figures 10 and 11 

depict the variance of training and testing 

dataset respectively. The predicted variance 

can be used to determine the confidence 

interval. 

 

A comparative study has been done between 

developed SVM, RVM, and ANN model 

developed by Maji and Sitharam(2008)[3]. 

Maji and Sitharam (2008) [3] successfully 

used backpropagation (BP) and radial basis 

function (RBF)-based ANN model for the 

prediction of Ej of jointed rock mass. 

Comparison has been done for testing dataset. 

Figure 12 represents the bar chart of average 

absolute error (%) for the different models.  

 

 

 

 

 

 

 

 

Fig. 9 Values of w for RVM Model. 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Variance of Training Dataset for RVM Model. 
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Fig. 11 Variance of Testing Dataset for RVM Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Comparison between ANN, SVM and RVM Models. 
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Figure 12 also shows that the developed SVM 

and RVM models outperform the ANN 

models. The developed SVM and RVM use 

three(C, , and ) and one kernel parameter 

(), respectively. In ANN, there are a larger 

number of controlling parameters, including 

the number of hidden layers, number of hidden 

nodes, learning rate, momentum term, number 

of training epochs, transfer functions, and 

weight initialization methods.  

 

The performance of RVM model is slightly 

better than the SVM model. The developed 

RVM model uses 58.95% of training data as 

relevance vector. These relevance vectors are 

only used for final prediction. Therefore, the 

developed RVM produces sparse solution. 

Sparseness means that a significant number of 

the weights are zero (or effectively zero), 

which has the consequence of producing 

compact, computationally efficient models, 

which in addition are simple and therefore 

produce smooth functions. 

 

The developed SVM model uses 27.68% of 

training data as support vector. These support 

vectors have been used for final prediction. 

The developed SVM model produces more 

sparse solution than RVM model. The 

performance of SVM and RVM is almost 

same for the training and testing dataset. So, 

the developed SVM and RVM do not exhibit 

any overtraining. Therefore, the developed 

SVM and RVM have good generalization 

capability.  

CONCLUSIONS 

 

This paper describes the twostatistical learning 

algorithms (SVM and RVM) for prediction of 

Ej of jointed rock mass. Both algorithms give 

promising results. The developed SVM and 

RVM model outperforms the ANN models. In 

terms of prediction accuracy, the performance 

of RVM model is slightly better than SVM 

model. The developed RVM model has the 

added advantage of probabilistic interpretation 

that yields prediction uncertainty. In terms of 

sparseness, the performance of SVM is better 

than the RVM model. User can use the 

developed equations for prediction of Ej of 

jointed rock mass. The developed SVM and 

RVM models can be used as quick tools for 

prediction of Ej of jointed rock mass. In 

summary, this study has given two robust 

models based on the SVM and RVM for the 

prediction of Ej of jointed rock mass. 
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