Parameter Identification at Large Scale through Solution of the Inverse Problem
Abstract
The fundamental benefit of groundwater modeling is to predict the response of the aquifer to the proposed man-mad excitation (e.g., pumping artificial recharge). Inverse analysis is frequently used for large-scale real-world problems, where the number of unknown parameters that will fully represent the heterogeneity becomes very large and the inverse analysis solution becomes ill-posed, to overcome this problem, in the present paper the study domain is divided into zones connected to the hydraulic gradient using different methods of parameterization. Zoning characterized with similar hydraulic gradient was considered having the same values of transmissivity, accordingly deferent zoning schemes of parameter distribution were obtained then the optimization process was conducted. The determination of the optimum dimension of the parameter distribution was achieved utilizing the trade-off between the objective function and the error of uncertainty.
Keywords: Parameter identification, transmissivity, zonation, inverse analysis
Keywords
Full Text:
PDFReferences
Karvonen T .Subsurface and groundwater hydrology : basic theory and application of computational methods, (modified 10th of September 2002) copyright by Tuomo Karvonen, Helsinki University, Laboratory of Water Ressourses Tietotie 1,02150 Espoo, Finland (Electronic Book)
Ne-Zheng Sun. Inverse problems in groundwater modeling – Kluwer Academic Publishers, (1994);
Cacas M.C., De Marsily G., Tillie B. Modeling fracture flow with a stochastic Discrete Fracture Network: calibration and validation Water Resour. Res (1990) Vol. 26 N. 3 P. 479-489
Di Fazio, C. Masciopinto, S. Troisi, M. Vurro Un’interpretazione bidimensionale di prove di tracciamento in sistemi fratturati XXIV; Convegno di Idraulica e Costruzioni Idrauliche Napoli 1994
Mas Agus Mardyanto and Erman Evgin, Effect of zonation scheme in analysis using a stochastic groundwater inverse finite element method. International society for Environmental Information Section(2004); Vol (2), p186-196
Chiaia G., Di Santo A., Ranieri M. (1999) Parameter identification of the karst aquifer in the south-east territory of Bari. 2nd symposium “ protection of groundwater from pollution and seawater intrusion ” Bari, September 27- October 1, 1999
Tsai, F. T-C. (2002). Inverse Problem and Parameter Structure Identification in Groundwater Modeling, Ph.D. Dissertation, University of California, Los Angeles, June, 182p
Yeh, W. W-G., and Yoon, Y. S. A systematic identification procedure for the identification of inhomogeneous aquifer parameters, Advances in Groundwater Hydrology, edited by Z. A. Saleen, AWRA, 72-82. (1976).
Cooley, R. L., A method of estimating parameters and assessing reliability
for models of steady state groundwater flow, 2, Application of statistical analysis, Water Resour. Res. (1979), 15(3), 603–617
William W-G Yeh (1986) Review of parameter estimation procedures in groundwater hydrology: The inverse problem. Water Resour. Res (1986) 22 (1) :p95-108
Carrera J, Neuman SP ; Estimation of aquifer parameters under transient and steady-state conditions, 1. Maximum likelihood method incorporating prior information. Water Resour. Res (1986a) vol 22 n.(2) p:199–210
Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady-state conditions, 2. Uniqueness, stability and solution algorithms. Water Resour Res (1986b) vol 22n.(2): p211–227
Carrera J, Neuman SP (1986c) Estimation of aquifer parameters under transient and steady-state conditions, 3. Application to synthetic and field data. Water Resour Res (1986c) vol22 n.(2)p:228–242
Sun, N-Z., Yang, S. and Yeh, W. W-G. (1999). .Model structure identification and datacollection strategy for basin water resources management,. Manuscript submitted to Water Resour. Res, 1999.
Yeh WWG, Yoon Y.S. Aquifer parameter identification with optimum dimension in parameterization. Water Resour. Res, (1981)V17 No(3):664-672
Myers, K.L. Applications of Stochastic Analysis in Surface and Groundwater Godelling. Proceedings of the 55th Canadian Geotechnical and 3rd Joint IAH-CNC and CGS Groundwater specialty Conferences. Niagara Falls, Ontario. October (2002). Pp. 1045-1051.
Chiaia G. Di Santo A., Ranieri M. Interpretazione di misure sperimentali della falda pugliese. Giornale mondiale della acqua – Roma (1999)
W.W-G Yeh., Y S. Yoon, K.S. Lee ( 1983) Aquifer parameter identification with kriging and optimum parameterization – . Water Resour Res (1983), vol.19, n.1, pp.225-233
Bard, Y., Nonlinear Parameter Estimation, Academic, San Diego, Calif., 1974.
Carrera. J, A. Alcolea, A. Medina, J. Hidalgo, L. Slooten (2005) Inverse problem in hydrology. Hydrogeology – 13: 206-222
Chiaia G., Di Santo A., Ranieri M. “Studies for the wellhead protection area definition: Parameter identification of deep carsick groundwater”- (Electronic publication)
Emil O. Frind, George F.P. ( 1973) Galerkin solution of the inverse problem for aquifer transmissivity – Water Resour Res, vol.9, n.5, pp.1397-1411
Frank T-C. Tsai and William W-G. Yeh (2004) Characterization and identification of aquifer heterogeneity with generalized parameterization and Bayesian estimation – Water Resour Res, vol.40
Ne-Zheng Sun, Ming-Chin Jeng, nd William W-G. Yeh (1995) A proposed geological parameterization method for parameter identification in three-dimensional groundwater modeling – Water Resour Res, vol.31, n.1, pp.89-102
Russo L. Indagine sulla corretta posizione del problema inverso per lo studio di un acquifero a scale territoriale, “Tesi di laurea in idraulica, Politecnico di Bari” (2002)
Allan K., Rosbjerg D. ( 1991) A comparison of four inverse approaches to groundwater flow and transport parameter identification – Water Resour Res, vol.27, n.9, pp.2219-2232
Bear J. ( 1987 ) Modeling groundwater flow and pollution- Reidel Publishing company
Refbacks
- There are currently no refbacks.