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Abstract 

Advent of conformal mapping eases to model a flow in sought-after domain without trade- off between 

laws of fluid mechanics and the theory of complex valued-functions. The far-reaching properties 
manifested by conformal mapping discern and facilitate solution of large class of two-dimensional flow 

problems. Bilinear transformation is amidst the conformal mappings. The properties, mapping a 

circular boundary onto horizontal line and composition of bilinear transformations is again a bilinear 
transformation are steppingstone to study a composition of a flow of an ideal fluid around a cylinder 

of circular cross-section mounted in the plane. This circumstance simplifies the proposition of 

combining two flows, which constitutes the primary focus of this paper. As an initial step towards 

advancing the investigation of fluid flow, an attempt is made herein. However, the process of adding 
the two fundamental flows is more intricate than it may initially appear. 
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INTRODUCTION 
Flow through a circle cylinder is one of the more traditional study problems. Isaac Newton is believed 

to have been the first to observe the motion of tennis ball in 1671 [1]. The path of bullet is nearly 

parabola was the common understanding at the end of 18th century. At the beginning of 19th century in 

1805, Benjamin Robins attributed the deflection in motion of bullet to the change in air resistance [2] 
and hence called the Robin effect. Magnus studied the motion of a fluid around spinning cylinder of 

uniform circular cross section in 1852 and investigated that the path deflection of cylinder is due to 

fluid pressure on the opposite side of the spinning cylinder, called Magnus effect [3–4]. However, the 
zero drag and lift force on the cylinder in terms of circulation, called Kutta-Joukoswki theorem, is 

presented in early 20th century by the duo, M. W. Kutta and N. Y. Zhukovsky (or Joukoswki) [5]. 

Rayleigh [6] observed the irregularity in flight of the tennis ball in the year 1877. Lafay [7] noted the 
deflection of stream lines in the vicinity of circular cylinder due to the pressure and suction in the year 

1912. However, Milne-Thomson explicitly devised the complex potential for the flow in the plane when 

the right circular cylinder, is placed into two-dimensional flow such that its axis is perpendicular to the 

plane of flow, known as Milne-Thomson circle theorem [8]. 
 

The linear partial differential equations 

superposition of responses is once more a solution. 
Irrotational flows being solution of partial 

differential equation ∇2𝜙 = 0, i.e., the Laplace 

equation can be superimposed to form the 

abounding new solutions which are complicated in 
nature. Sink flow, source flow, doublet flow and 

vortex flow are the constituents to form the 

combined irrotational flows. Rankine [1820–1872] 
took superposition of basic flows such as uniform 

flow and source flow to give Rankine half body 

flow while uniform flow and sink flow to give the 
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flow past a Rankine oval. Flow about circular cylinder when added to free vortex generates lifting flow. 
But to sum up the elementary flows is not merely the mathematical operation to do. It is the composition 

of two flows which is not yet studied. To extend the study of fluid flow to the next level, one attempt 

as a first step is made here. Adding the two fundamental flows is not as simple as it seems. At first, 
derivative of complex conjugate of bilinear transformation is a complex representation of fluid flow 

around cylinder is proved. and by using the property of bilinear transformation that the composition of 

two bilinear transformation is again a bilinear transformation, two fluid flows around circular cylinder 
are composed to give the flow around same cylinder. 

 
One-to-one conformal projection can be used to map the domain boundaries onto a line that is 

horizontal in the w-plane, allowing for the development of flow patterns in a specific domain in the z-

plane. Bilinear transformation considered, tore off, nowadays is the mapping which can map the domain 

under study to the coveted one is one of its triumphs which is less appreciated and enjoyed by scientist’s 

and engineer’s. In general, a straight line is a collection of points z in the z-plane that fulfil |𝑧 − 𝑧1| =|𝑧 

− 𝑧2|. Specifically, given certain restrictions, it appears geometrically possible that the set of points z 

lies on a real axis or horizontal line. Under certain restrictions bilinear transformation can map the circle 

onto a horizontal line. Taking advantage of this property we construct a flow of fluid around a cylinder 

in a plane. 

 

PREREQUISITE 

Theorem 

If 𝑤 = Ω (z) = 𝜙(𝑥, 𝑦) + 𝑖 𝜓(𝑥, 𝑦) is a one-to-one conformal mapping of the domain 𝐷 in the z- plane 

onto a domain 𝐷′ in the w-plane such that the image of the boundary 𝐶 of 𝐷 is a horizontal line in the 

w-plane, then 𝑓(𝑧) = �̅�′(z) is a complex representation of a flow of an ideal fluid in 𝐷 [9]. 

 

Milne-Thomson Circle Theorem 

Let 𝑓(𝑧) be the complex velocity potential for a flow having no rigid boundaries and such that there 

are no singularities of flow within the circle |𝑧| = 𝑎. Then, on introducing the solid circular cylinder |𝑧| 

= 𝑎 into the flow, the new complex velocity potential is given by 

𝑤 = 𝑓(𝑧) +  𝑓(̅  𝑎2/𝑧) 

for |𝑧| ≥ 𝑎. [8,10,11]. 

 

Blasius Theorem 

Assuming no external forces, an incompressible fluid flows continuously and irrotationally parallel 

to the z-plane past a fixed cylinder, the section of which is enclosed by a closed curve ➀. The action of 

the fluid pressure on the cylinder is equal to a force per unit length with component [X, Y] and a couple 

per unit length of moment M, where W is the complex potential for the flow. where 

𝑌 + 𝑖𝑋 = −
𝜌

2
∮ (

𝑑𝑤2

𝑑𝑧
)  𝑑𝑧;  

𝑀 = 𝑅𝑒 {{−
𝜌

2
. ∮ …⃗⃗ 𝑧 (

𝑑𝑤2

𝑑𝑧
) 𝑑𝑧} (1) 

 

Kutta-Joukowski Lift Theorem 

𝑀 = 𝑅𝑒 {− 2 ∮   𝑧 ( 𝑑𝑧 ) 

 𝑑𝑧} [1] Think about a continuous, uniform flow that is moving past obstruction B at speed U. The 

flow has no singularities and there is a circulation Γ surrounding the impediment. Then, according to, 

the obstruction experiences a lift force L perpendicular to the flow and a drag force D parallel to the 

flow [10]. 
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𝐷 = 0 𝑎𝑛𝑑 L = −ρUΓ [12]. 

D'Alembert Paradox 

 A body moving with constant velocity in relation to the fluid experiences zero drag force in an 

incompressible and inviscid potential flow. The discovery of significant drag on bodies moving in 
relation to fluids like air and water, particularly at high velocities that correspond with high Reynolds 

numbers, directly contradicts the theory of zero drag. 

 

MAIN THEOREM 

Lemma 

In the complex plane the locus of 𝑧 such that |𝑧 − 𝑧1| = |𝑧 − 𝑧2| is a straight line. Moreover, it is 

horizontal line if 𝑅𝑒(𝑧1) = 𝑅𝑒(𝑧2) and real axis if �̅�1 = 𝑧2. 

 

Theorem 
If in the bilinear transformation, 

w =  Ω (z) =
az + b

𝑐𝑧+𝑑
  

the constants 𝑎, b, c and d are such that 𝑎𝑑 − 𝑏𝑐 ≠ 0, also |𝑑| = 𝑟|𝑐|, where 𝑟 > 0 and 

𝑅𝑒 (
𝑎

𝑐
) = 𝑅𝑒 (

𝑏

𝑑
)  

then �̅�′(z) is a complex representation of a flow of an ideal fluid in the domain |𝑧| > 𝑟 in z-plane. 

 

Proof 
To prove the theorem, we check requirements of theorem (2.1) for w = Ω (z). Let D denote the domain 

|𝑧| > 𝑟, including point at infinity in the z-plane, of the bilinear transformation 𝑤 = Ω (z). 

 

Since |𝑑| = 𝑟|𝑐|, the pole 𝑧 = −
𝑑

𝑐
, only singularity, of   𝑤 = Ω (z) which lies on the boundary of D. It 

precludes the existence of singularity inside D and ensures that w = Ω (z) is analytic there. Being bilinear 

transformation the mapping 𝑤 = Ω (z) is one-to-one on its domain and Ω′ (z) ≠ 0 follows from the 

condition that 𝑎𝑑 − 𝑏𝑐 ≠ 0. 𝐴lso, for each w in co-domain there is. 

𝑧 =
−dw + b

cw − a
 𝜖𝐷 

 

To find the image of the boundary |𝑧| = 𝑟 of D under the bilinear transformation 𝑤 = Ω (z). Let us 

consider 

r =  |z|  =  |
−𝑑𝑤+𝑏

𝑐𝑤−𝑎
  

|𝑤 −
𝑎

𝑐
| = 𝑤 −

𝑏

𝑑
 (1) 

 

It follows from lemma (∮) that equation (1) is a horizontal line in the w-plane. However, to find the 

image of the domain |𝑧| > 𝑟 under 𝑤 = Ω (z). 

let 𝛼 =
𝑎

𝑐
, 𝛽 =

𝑏

𝑑
⟹ 𝑅𝑒 𝛼 = 𝑅𝑒 𝛽 

⇒ 𝛼 = 𝑠 + 𝑖𝑡1 and 𝛽 = 𝑠 + 𝑖𝑡2, 
 

Also, if 𝑤 = 𝑢 + 𝑖𝑣 then |𝑧| > 𝑟 ⇒ 2𝑣 > 𝑡1 + 𝑡2. 

 

Therefore, the exterior of the circle |𝑧| = 𝑟 maps either above or below the line (1) according as 

𝑡1 + 𝑡2 > 0 or 0 > 𝑡1 + 𝑡2. Thus, 𝑤 = Ω (z) is one-to-one conformal mapping from |𝑧| > 𝑟 
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onto 2𝑣 > 𝑡1 + 𝑡2 of w-plane. 

Corollary 
If the bilinear transformations, 𝑤 = 𝛺1(z) and 𝑤 = 𝛺2(z) are two complex velocity potentials of the 

flow of an ideal fluid in the domain |𝑧| > 𝑟 such that they differ by constant only. Then �̅�′1(z) and �̅�′2(z) 
represents same flow around the cylinder [11]. 

 

Lemma 
A bilinear transformation  

𝑤 =  𝛺 (𝑧)  =
az + b

cz + d
  

maps a real axis of 𝑧-plane onto a real axis of 𝑤-plane if and only if 𝑎, 𝑏, 𝑐 and 𝑑 are real. 
 

Theorem 
In the bilinear transformation 

Ω1(z)  =  
az + b

cz + d
  

|𝑑| = 𝑡|𝑐| where 𝑡 > 0 and 

𝑎

𝑐
=

𝑏

𝑑
  

Also, in the bilinear transformation 

Ω2     (z)  =  
αz + β

𝑣𝑧+𝛿
  

α, β, γ and δ are real. If  Ω (z) = 𝛺2(𝛺1(z)) then  �̅�′(z) is a complex representation of a flow of an ideal 

fluid in the domain |𝑧| > 𝑡 in z-plane. 
 

Proof 
It is evident that 
 

Ω (z) = 𝛺2(𝛺1(z)) 

Ω (z)  =
(αa + βc)z + (αb + βd)

(γa + δc)z + (γb + δd)
  

=
pz + q

rz + s
  

is a bilinear transformation. 
 

where 𝑝 = 𝛼𝑎 + 𝛽𝑐 , 𝑞 = 𝛼𝑏 + 𝛽𝑑 , 𝑟 = 𝛾𝑎 + 𝛿𝑐 and 𝑠 = 𝛾𝑏 + 𝛿𝑑. Also 𝑝𝑠 − 𝑟𝑞 ≠ 0,  As 
𝑎

𝑏

 and 
𝑏

𝑑
 are 

conjugates 

 
𝑎

𝑐
= λ +  iμ ⇒

𝑏

𝑑
= λ −  iμ   

|
𝑠

𝑟
| = |

𝛾𝑏+𝛿𝑑

𝛾𝑎+𝛿𝑐
= 𝑡  

𝑝

𝑟
=

(αλ + β) + iαμ

(γ λ + δ) + iγμ
  

𝑞

𝑠
=

(αλ + β) − iαμ

(γ λ + δ) − iγμ
  

⇒ Re (
𝑝

𝑟
) = 𝑅𝑒 (

𝑞

𝑠
)  
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Therefore, by theorem (3.2) �̅�′(z) represents a flow of an ideal fluid around a cylinder |𝑧| = 𝑡 of 
circular cross section. 

Another Proof 

By virtue of lemma (3.1), since 
𝑎

𝑐
=

𝑏

𝑑
 equation (1) shows that 𝛺 maps a circle |𝑧| = 𝑡 onto real axis 

which by lemma (3.4) is mapped onto real axis under 𝛺2. A bilinear transformation Ω, being a 

composition of two bilinear transformations 𝛺1 and 𝛺2 is one-to-one conformal mapping of the circle 

|𝑧| = 𝑡  onto the horizontal line 𝑣 = 0. Therefore, by theorem (2.1), �̅�′(z) represents flow of fluid in the 

sought-after domain. 

 

Theorem 

If the bilinear transformation 𝑤 = Ω (z) is complex velocity potential for the steady flow of an ideal 

fluid around circular cylinder whose boundary in the plane is ✔, then the net force exerted by the fluid 

on cylinder is zero. Further the moment of couple is zero. 
 

Proof 
Suppose a complex velocity potential be given by 

𝑤 =
az + b

cz + d
  

The net force, by Blasius theorem is 

Y +  iX =  − 
ρ

2
∮ (

𝑑𝑤2

𝑑𝑧
)  𝑑𝑧  

=
−ρ

2
∮

(ad − bc)2

(cz + d)4 
𝑑𝑧  

= −
ρ

2
 (𝑎𝑑 − 𝑏𝑐)2 × 2𝜋 𝑖 × (Residue of the function 

1

(cz+d)4
 at 𝑧 = −

𝑑

𝑐
=0  

 
Also, moment about O is 

𝑀 = 𝑅𝑒 {−
ρ

2
∮ z (

𝑑𝑤2

𝑑𝑧
)𝑑𝑧}  

= Re {−
ρ

2
 (ad −  bc)2 ∮

𝑧

(𝑐𝑧+𝑑)4
𝑑𝑧} 

= 𝑅𝑒 {−
ρ

2
(ad −  bc)2 × 2𝜋 𝑖 ×  ∮ Residue of the function 

𝑧

(𝑐𝑧+𝑑)2
 at z = −

𝑑

𝑐
}=0 

 

EXAMPLES 

Example 

Construct a flow of an ideal fluid in the domain 𝐷; |𝑧| > 1 in the plane. Consider the mapping be 

defined on 𝐷 by 

w =  Ω (z)  =
iz + 1

z + i
  

u (x, y)  =  
2𝑥

𝑥2+(1+𝑦)2
  

𝑣(𝑥, 𝑦) =
x2 + y2 − 1

x2 + (1 + y)2
  

clearly 𝑤 = Ω (z) being bilinear transformation is one-to-one conformal mapping of 𝐷. For each 

𝑤 there is 𝑧 =
1−𝑖𝑤

𝑤−𝑖
 𝜖 𝐷 and hence onto mapping. 



 

 

Composition of Ideal Fluid Flows                                                             Mohammed Mukhtar Mohammed Zabih 

 

 

© STM Journals 2023. All Rights Reserved 36  
 

 

To find image of the domain 𝐷 and its boundary, take |𝑧| = 1 ⇒ 𝑣 = 0. If |𝑧| > 1 ⇒ 𝑣 > 0 

Therefore, the domain 𝐷 and its boundary are mapped onto upper half plane, 𝐼𝑚 𝑤 > 0 and real axis, 

𝑣 = 0 (i.e. horizontal line) of the w-plane respectively. 

 
The stream lines of the flow are 

x2+y2 − 1

x2+(x+y)2 
 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑓(𝑧) = Ω(z) =
𝑖−1

(𝑧)2
  

is a complex representation of fluid flow. 

 

Example 

Construct a flow of an ideal fluid in the domain 𝐷; |𝑧| > 1 in the plane. 
 

Construction 1 

 
Consider the mapping 

w =  Ω1(z)  =  (1 +  i)
z + i

z−1
  

 u (x, y)  =
x2 + y2− 2x + 2y + 1

(x − 1)2 + y2   

𝑣 (𝑥, 𝑦)  =
x2 + y2− 1

(x − 1)2+y2  

If 𝑤 is any point in co-domain then 𝑧 =
𝑤−1+𝑖

𝑤−𝑖−1
  𝜖 𝐷, hence onto mapping. Same argument as in above 

Section of Example , gives the stream lines of the flow 

 

x2 + y2− 1

(𝑥−1)2+𝑦2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝑓(𝑧) = Ω(z) =
2𝑖

(𝑧−1)2
  

 

Construction 2 

Consider the mapping 

w =  Ω2(z)  =  i 
z + 1

𝑧−1
  

u (x, y)  =
2𝑦

(𝑥−1)2+𝑦2  

𝑣(𝑥, 𝑦) =
x2 + y2 − 1

(𝑥−1)2+𝑦2  

It can easily be verified the required condition to give stream lines 

x2 + y2 − 1

(x − 1)2 + y2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝑓(𝑧) = Ω2(𝑧) =
2𝑖

(𝑧−1)2
  

It should be noted that the bilinear transformations in construction 1 and construction 2 of example 

(4.2) are such that 
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𝛺1(z) − 𝛺2(z) = 1 
 

it implies that 

Ω1(𝑧) = Ω1(𝑧)  

and hence the flows are same, which is what the corollary (3.3) says. Talking in another language, 

distinct bilinear transformations could be the complex velocity potential for the same flow in a given 

domain. 

 
Finally, we will find composition of two flows. 

 

Example 
If θ is a real constant and 

w =  Ω1(z)  =
ieθz − i

z − eθ   

w =  Ω2(z)  =
𝑧+2

3𝑧+4
   

Also, Ω (z) = 𝛺2(𝛺1(z)) then show that  �̅�′(z) is a complex representation of a flow of an ideal fluid 

around a cylinder of circular cross section centered at ( 𝑐𝑜𝑠ℎ𝜃, 0 ) and radius 𝑠𝑖𝑛ℎ𝜃. 
 

Let 𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑢 + 𝑖𝑣. Consider the circle centered at ( 𝑐𝑜𝑠ℎ𝜃, 0 ) and radius 𝑠𝑖𝑛ℎ𝜃. 

 
The equation of a circle is 

 

𝑥2 + 𝑦2 − 2𝑥 𝑐𝑜𝑠ℎ𝜃 + 1 = 0 

i(zeθ  − 1)

z − eθ +
𝑖(𝑧𝑒θ−1

𝑧−𝑒𝑒θ = 0  

𝑤 − �̅�  = 0 
 

𝑣 = 0 

 

The image of real axis 𝑦 = 0 under 𝑤 = 𝛺2(z) is 

𝑢 +  𝑖𝑣 =  
𝑥+2

3𝑥+4
⇒  𝑣 =  0  

The real axis in the co-domain of 𝑤 = 𝛺2(z).  

 

Now 

Ω (z) = 𝛺2(𝛺1(z)) 

=
(ieθ  + 2)z − (i + 2eθ)

(3ieθ + 4)z − (3i + 4eθ)
  

maps the circle centered at ( 𝑐𝑜𝑠ℎ𝜃, 0 ) and radius 𝑠𝑖𝑛ℎ𝜃 onto the horizontal line viz. real axis in the 

co-domain of  𝛺2. Thus, by the theorem (3)  �̅�′(z) gives required complex representation of fluid flow 
[12]. 

 

CONCLUSION 
Property of bilinear transformation- mapping the circle onto line and horizontal line subject to some 

constraints eases to construct the ideal fluid flow around a circular cylinder (theorem 3.) i.e. to derive 

the complex velocity potential of flow of an ideal fluid commensurable with Milne- Thomson circle 

theorem (2.2). If two bilinear transformations satisfying the conditions of theorem 4., then the conjugate 
of derivative of the composite map of these two mapping represents the complex form of an ideal fluid 
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flow. This paves the way to engender the new flows from the known flows by taking their composition. 
However, this method is limited to the flow of an ideal fluid past a circular cylinder only. But the little 

extension can open an avenue to produce new flows as a composition of existing flows in general. 

 
Net force exerted by fluid on a cylinder and moment of couple is evaluated using theorem due to 

Blasius (2.3) both of which are zero. Ideally, we expect in practice that the fluid should experience a 

nonzero force on cylinder. This discrepancy between experimental reality and theoretical predictions is 
due to the negligence of viscous effect, which is exactly what the D’Alembert’s paradox (2.5) says for 

the moving body relative to fluid motion. Thus, the D’Alembert’s paradox is verified for the flow 

derived by using bilinear transformation. Force and moment (zero) derived in this chapter are consistent 

with the well-known theorems due to Kutta- Joukowski (2.4). 
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