Study of Multiple-Input Multiple-Output DC-DC Converter for DC Microgrid Applications
Abstract
DC microgrids have been developed because of the integration of renewable energy sources and the rising demand for sustainable energy solutions. DC microgrids offer numerous advantages such as increased efficiency, reduced transmission losses, and enhanced reliability. However, the varying output characteristics of renewable sources and the dynamic nature of loads within a microgrid necessitate efficient power management systems. In order to overcome these difficulties, MIMO (Multiple-Input Multiple-Output) DC-DC converters have become a viable option. This paper presents a comprehensive review of the state-of-the-art MIMO DC-DC converters for DC microgrid applications. Various topologies, control strategies, and performance evaluation methods are discussed, providing insights into the current research landscape and future directions.
Full Text:
PDFReferences
H. Zhang, M. Jing, W. Liu, D. Dong, Multiple-harmonic modeling, and analysis of single-inductor dual- output buck DC-DC converters, IEEE J. Emerg. Sel. Top. Power Electron. (2020), https://doi.org/10.1109/jestpe.2020.2969441. PP.1–1.
G. Chen, Z. Jin, Y. Deng, X. He, X. Qing, Principle and topology synthesis of integrated single-input dual-output and dual-input single-output DC-DC converters, Ieee Trans. Ind. Electron. 65 (5) (2018) 3815–3825. [
Khalegh Mozaffari, Mahshid Amirabadi, A highly reliable and efficient class of single-stage high- frequency AC-Link converters, Ieee Trans. Power Electron. 34 (9) (2019). PP.8435 - 8452.
A. Affam, Y.M. Buswig, A.-K.B.H. Othman, N.B. Julai, O. Qays, A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems, Renewable Sustainable Energy Rev. 135 (2021), 110186, https://doi.org/10.1016/j.rser.2020.110186.
J. Zeng, W. Qiao, L. Qu, Y. Jiao, An isolated multiport DC-DC converter for simultaneous power management of multiple different renewable energy sources, IEEE J. Emerg. Sel. Top. Power Electron. 2 (1) (2013) 70–78. November 2013.
N. Swaminathan, Y. Cao, An overview of high-conversion high-voltage DC-DC converters for electrified aviation power distribution system, Ieee Trans. Transp. Electrif. (2020), https://doi.org/10.1109/tte.2020.3009152. PP.1–1.
T. Chaudhury, D. Kastha, A high gain multiport DC-DC converter for integrating energy storage devices to DC microgrid, IEEE Trans. Power Electron. 35 (10) (2020). PP.10501–10514.
B. Wang, Y. Wang, Y. Xu, X. Zhang, H.B. Gooi, A. Ukil, X. Tan, Consensus-based control of hybrid energy storage system with a cascaded multiport converter in DC microgrids, Ieee Trans. Sustain. Energy 11 (4) (2019). PP.2356 – 2366.
Sajad Rostami, Vahid Abbasi, Masoumeh Parastesh, Design and implementation of a multi-port converter using Z-Source converter, Ieee Trans. Ind. Electron. (2020), https://doi.org/10.1109/TIE.2020.3022538. PP.1-1.
V. Indragandhi, A. Benitto, Performance analysis, modeling and control of multiport DC-DC boost converter for an integrated power generation system, Indian J. Sci. Technol. 9 (36) (2016) 1–12.
Khan, Farha, Mohammad Zaid, Abu Tariq, and Mohammad Muktafi Ali Khan. "A new non-isolated high-gain DC-DC converter for the PV application." e-Prime-Advances in Electrical Engineering, Electronics and Energy 5 (2023): 100198. https://doi.org/10.1016/j.prime.2023.100198
Chapparya, Vaishali, Anubrata Dey, and Sajjan Pal Singh. "A Novel Non-Isolated Boost-Zeta Interleaved DC-DC Converter for Low Voltage Bipolar DC Micro-grid Application." IEEE Transactions on Industry Applications (2023). DOI: 10.1109/TIA.2023.3284810
Li, Zifan, Xuekai Hu, Lei Wang, Liang Meng, Yuhao Zhao, and Runtao Zhang. "Design and control optimization of a three-level bidirectional DC–DC converter for energy storage system." Energy Reports 9 (2023): 1681-1695. https://doi.org/10.1016/j.egyr.2023.04.119
Kulasekaran, P.S.; Dasarathan, S. Design and Analysis of Interleaved High-Gain Bi-Directional DC– DC Converter for Microgrid Application Integrated with Photovoltaic Systems. Energies 2023, 16, 5135. https://doi.org/ 10.3390/en1613513
Ullah, Qudrat, Tiago Davi Curi Busarello, Danilo Iglesias Brandao, and Marcelo Godoy Simões. 2023. "Design and Performance Evaluation of SMC-Based DC–DC Converters for Microgrid Applications" Energies 16, no. 10: 4212. https://doi.org/10.3390/en16104212
J. Samanes, A. Urtasun, E. Barrios, D. Lumbreras, J. Lopez, E. Gubia, P. Sanchis, Control design and stability analysis of power converters: the MIMO generalized bode criterion, IEEE J. Emerg. Sel. Top. Power Electron. 8 (2) (2019) 1880–1893. Issue: 2.
B. Wang, X. Zhang, J. Ye, H.B. Gooi, Deadbeat control for single-inductor multiple input multiple- output DC-DC converter, Ieee Trans. Power Electron. 34 (2) (2018) 1914–1924.
B. Wang, L. Xian, V.R.K. Kanamarlapudi, K.J. Tseng, A. Ukil, H.B. Gooi, A digital method of power- sharing and cross-regulation suppression for single-inductor multiple-input multiple-output DC-DC converter, Ieee Trans. Ind. Electron. 64 (4) (2017) 2836–2847, https://doi.org/10.1109/tie.2016.2631438
H. Behjati, A. Davoudi, A multiple-input multiple-output DC-DC converter, IEEE Trans. Ind. Appl. 49 (3) (2013) 1464–1479, https://doi.org/10.1109/ tia.2013.2253440.
X.L. Li, Z. Dong, C.K. Tse, D.D.C. Lu, Single-inductor multi-input multi-output DC DC converter with high flexibility and simple control, Ieee Trans. Power Electron. (2020), https://doi.org/10.1109/tpel.2020.2991353, 1–1.
G. Chen, Y. Liu, X. Qing, M. Ma, Z. Lin, Principle and topology derivation of single inductor multi- input multi-output DC–DC converters, Ieee Trans. Ind. Electron. 68 (January 1) (2021) 25–36, https://doi.org/10.1109/TIE.2020.2965490
DOI: https://doi.org/10.37591/.v13i3.7646
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Trends in Electrical Engineering
eISSN: 2249-4774