Open Access Open Access  Restricted Access Subscription or Fee Access

A Study of Carbon Nanotubes in Photovoltaic Devices

T. D. Subha, K. S. Swetha

Abstract


Abstract

Arrays of periodic one-dimensional nano materials provide light–matter interaction in terms of tunable optical properties which are attractive for planning efficient optoelectronic devices. This paper is based on n-i-p thin-film amorphous silicon utilizes scaffolds of vertically aligned carbon nanotube (CNT) array for a fabrication of bottom-up grown Nano pillar (NP) array solar cells. The varying effect of the CNT extent over a wide range from 800 to 2000 nm on electrical properties of the solar cells and optical were examined. The NP solar cell with CNT extent over a range of 800 nm show ‘moth-eye’ broadband antireflection effort and the value 10% lower than an average reflectance. The enhanced optical absorption relocates to significant enhancements in quantum efficiency and photocurrent contrast to a conventional planar solar cell under low light circumstances. The open-circuit voltage (Voc) of the NP solar cell was established uniformly correlated with the illumination condition and CNT spacing. The main importance is to develop high efficiency one-dimensional nanostructured solar cells results were presented here.

Keyword: carbon nanotube (CNT Amorphous silicon photovoltaic cells, Nano photonics, nanostructured materials.

Cite this Article

K.S. Swetha, T.D. Subha. A Study of Carbon Nanotubes in Photovoltaic Devices. Trends in Opto-electro & Optical Communication. 2020; 10(1): 1–13p.



Full Text:

PDF

References


K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D.Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett., vol. 79, no. 10, p. 1534, 2001. 1004 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 13, NO. 5, SEPTEMBER 2014.

J. Cho, B. O. Donnell, L. Yu, K. Kim, and I. Ngo, “Sn-catalyzed silicon nanowire solar cells with 4. 9% efficiency grown on glass,” Prog. Photovolt: Res. Appl., vol. 21, no. 1, pp. 77–81, 2013.

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett., vol. 13, no. 4, pp. 1632–1637, May 2013.

R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy, vol. 1, no. 1, pp. 57–72, Jan. 2012.

M. M. Hilali, S. Yang, M. Miller, F. Xu, S. Banerjee, and S. V Sreenivasan, “Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures,” Nanotechnology, vol. 23, no. 40, p. 405203, Oct. 2012.

T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” in Proc. Natl. Acad. Sci. USA., vol. 109, no. 5, pp. 1407–1412, Jan. 2012.

H. Kang, J. Park, T. Choi, H. Jung, K. H. Lee, S. Im, and H. Kim, “n- ZnO:N/p-Si nanowire photodiode prepared by atomic layer deposition,” Appl. Phys. Lett., vol. 100, no. 4, p. 041117, 2012.

R. Kapadia, Z. Fan, K. Takei, and A. Javey, “Nanopillar photovoltaics: Materials, processes, and devices,” Nano Energy, vol. 1, no. 1, pp. 132–144, Jan. 2012.

C. Battaglia, C.-M. Hsu, K. S¨oderstr¨om, J. Escarr´e, F.-J. Haug, M. Charri`ere, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?,” ACS Nano, vol. 6, no. 3, pp. 2790–2797, Mar. 2012.

S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient photon capturing with ordered three-dimensional nanowell arrays,” Nano Lett., vol. 12, no. 7, pp. 3682–3689, Jul. 2012.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol., vol. 7, no. 11, pp. 743–748, Nov. 2012.

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured threedimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett., vol. 98, no. 16, p. 163503, 2011.

J. G. Wen, Z. P. Huang, D. Z. Wang, J. H. Chen, S. X. Yang, Z. F. Ren, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed, “Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films,” J. Mater. Res., vol. 16, no. 11, pp. 3246–3253, Jan. 2011.

T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi, vol. 208, no. 4, pp. 924–927, Apr. 2011.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett., vol. 10, no. 6, pp. 1979–1984, Jun. 2010.

T. Yamada, H. Yabutani, T. Saito, and C. Y. Yang, “Temperature dependence of carbon nanofiber resistance,” Nanotechnology, vol. 21, no. 26, p. 265707, Jul. 2010.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl., vol. 18, no. 3, pp. 195–203, May 2010.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale, vol. 2, no. 5, pp. 799–805, May 2010.

W. Wu, S. Krishnan, T. Yamada, X. Sun, P. Wilhite, R. Wu, K. Li, and C.Y.Yang, “Contact resistance in carbon nanostructure via interconnects,” Appl. Phys. Lett., vol. 94, no. 16, p. 163113, 2009

J. Park, S. Kwon, S.-I. Jun, I. N. Ivanov, J. Cao, J. L. Musfeldt, and P. D. Rack, “Stress induced crystallization of hydrogenated amorphous silicon,” Thin Solid Films, vol. 517, no. 11, pp. 3222–3226, Apr. 2009.

H. Zhou, A. Colli, A. Ahnood, Y. Yang, N. Rupesinghe, T. Butler, I. Haneef, P. Hiralal, A. Nathan, and G. A. J. Amaratunga, “Arrays of parallel connected coaxial multiwall-carbon- nanotube-amorphous-silicon solar cells,” Adv. Mater., vol. 21, pp. 3919–3923, Oct. 2009

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett., vol. 9, no. 1, pp. 279–282, Jan. 2009.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett., vol. 8, no. 9, pp. 2638–2642, 2008.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nano electronic power sources,” Nature, vol. 449, pp. 885–889, 2007.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett., vol. 7, no. 11, pp. 3249–3252, Nov. 2007.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys., vol. 97, no. 11, p. 114302, 2005.

P. Lalanne and G.M.Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology, vol. 8, no. 2, pp. 53–56, Jun. 1997.




DOI: https://doi.org/10.37591/toeoc.v10i1.3934

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Trends in Opto-Electro and Optical Communications