LBP-HOG-Statistical-Wavelet Transform Feature Based MCA Classifier
Abstract
Keywords
Full Text:
PDFReferences
Meng Xi, Liang Chen, Desanka Polajnar, and Weiyang Tong , ”LOCAL BINARY PATTERN NETWORK : A DEEP LEARNING APPROACH FOR FACE RECOG- NITION,” IEEE 2016.
O. De´niz , G. Bueno, J. Salido, F. De la Torre, ”Face recognition using Histograms of Oriented Gradients,” e 20 January 2011 Communicated by H. Wechsler.
E. El-Khamy, Fehv, Onsy A. Abdel-Alim And Mariam
M. Saii, ”NEURAL NETWORK FACE RECOGNI- TION USING STATISTICAL FEATURE EXTRAC- TION,” SEVENTEENTI1 N.1 TIONAI. RADIO SCI- ENCE CONFERENCE FcB. 22-24 , 2000, Miiirijija Ui- iiversitj) , Egypt.IEEE.
Z. Li, D. Gong, Q. Li, D. Tao, and X. Li, “Mutual com- ponent analysis for heterogeneous face recognition,” ACM Transactions on Intelligent Systems and Technol- ogy, vol. 7, no. 3, p. 28, 2016.
Z. F. Li, D. Gong, Y. Qiao, and D. Tao, “Common fea- ture discriminant analysis for matching infrared face im- ages to optical face images.” IEEE Transactions on Im- age Processing, vol. 23, no. 6, pp. 2436–2445, 2014.
X. Wu, L. Song, R. He, and T. Tan, “Coupled deep learning for heterogeneous face recognition,” CoRR, vol. abs/1704.02450, 2017. [Online]. Available: http://arxiv.org/abs/1704.02450.
Y. Wang, D. Gong, Z. Zhou, X. Ji, H. Wang, Z. Li, W. Liu, and T. Zhang, “Orthogonal deep fea- tures decomposition for age-invariant face recogni- tion,” in ECCV, V. Ferrari, M. Hebert, C. Sminchis- escu, and Y. Weiss, Eds. Cham: Springer International Publishing, 2018, pp. 764–779. [Online]. Available: http://arxiv.org/abs/1507.02879
C. Peng, X. Gao, N. Wang, and J. Li, “Graphical rep- resentation for heterogeneous face recognition.” IEEE Transactions on Pattern Analysis.
Z. F. Li, D. Gong, Y. Qiao, and D. Tao, “Common fea- ture discriminant analysis for matching infrared face im- ages to optical face images.” IEEE Transactions on Im- age Processing, vol. 23, no. 6, pp. 2436–2445, 2014.
M. S. Sarfraz and R. Stiefelhagen, “Deep perceptual mapping for thermal to visible face recognition,” CoRR, vol. abs/1507.02879, 2015.
Y. Chen, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint identification- verification,” in NIPS, 2014, pp. 1988–1996.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima- genet classification with deep convolutional neural net- works,” in NIPS, 2012, pp. 1097– 1105.
and Machine Intelligence, vol. 39, no. 2, pp. 301–312,
H. Shi, X. Wang, D. Yi, Z. Lei, X. Zhu, and S. Z. Li, “Crossmodality face recognition via heterogeneous joint bayesian,” IEEE Signal Processing Letters, vol. 24, no. 1, pp. 81–85, Jan 2017.
S. Liu, D. Yi, Z. Lei, and S. Z. Li, “Heterogeneous face image matching using multi-scale features,” in International Conference on Biometrics,
Y. Sun, X. Wang, and X. Tang, “Deep learning face rep- resentation from predicting 10,000 classes,” in CVPR, 2014, pp. 1891–1898.
F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and cluster- ing,” in CVPR, 2015, pp. 815–823.
Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach for deep face recognition,” in ECCV, 2016, pp. 499–515.
H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou,
Z. Li, and W. Liu, “Cosface: Large margin cosine loss for deep face recognition,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
Y. Wen, Z. Li, and Y. Qiao, “Latent factor guided con- volutional neural networks for age-invariant face recog- nition,” in CVPR, 2016, pp. 4893– 4901.
C. Reale, N. M. Nasrabadi, H. Kwon, and R. Chellappa, “Seeing the forest from the trees: A holistic approach to near-infrared heterogeneous face recognition,” in CVPR Workshops, 2016, pp. 320–328.
Q. Wu, H. Wu, X. Zhou, M. Tan, Y. Xu, Y. Yan, and T. Hao, “Online transfer learning with multiple homoge- neous or heterogeneous sources,” IEEE Transactions on Knowledge Data Engineering, vol. PP, no. 99, pp. 1–1, 2017.
Y. Yan, W. Li, M. Ng, M. Tan, H. Wu, H. Min, and Q. Wu, “Learning discriminative correlation sub- space for heterogeneous domain adaptation,” in Twenty- Sixth International Joint Conference on Artificial Intel- ligence. San Francisco: Morgan Kaufmann, 2017, pp. 3252–3258.
T. d. F. Pereira and S. Marcel, “Heterogeneous face recognition using inter-session variability modelling,” in CVPR Workshops, 2016, pp. 179– 186.
B. F. Klare and A. K. Jain, “Heterogeneous face recog- nition using kernel prototype similarities,” IEEE Trans- actions on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1410–1422, Jun.
, pp. 79–84.
C. Peng, X. Gao, N. Wang, and J. Li, “Sparse graphical representation based discriminant anal- ysis for heterogeneous face recognition,” CoRR, vol. abs/1607.00137, 2016. [Online]. Available: http://arxiv.org/abs/1607.00137
C. A. Hou, M. C. Yang, and Y. C. F. Wang, “Do- main adaptive selftaught learning for heterogeneous face recognition,” in ICPR, 2014, pp. 3068–3073.
Y. H. Tsai, H. M. Hsu, C. A. Hou, and Y. C. F. Wang, “Person-specific domain adaptation with applications to heterogeneous face recognition,” in IEEE International Conference on Image Processing (ICIP), Oct 2014, pp. 338–342.
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Trends in Opto-Electro and Optical Communications