Open Access Open Access  Restricted Access Subscription or Fee Access

Evolving Perspectives: Innovations in Object Detection and Identification

Monika Bairagi1, Janhavi Badave, Rohan Chaugule, Ganesh Birajadar, Nitin Khapale

Abstract


One of the most important developments in computer vision has been the creation of object detection and identification systems, which have allowed robots to perceive and understand visual data similarly to humans. These systems locate each object by drawing a bounding box around it, in addition to detecting and classifying every object in an image or video. This study suggests a novel method for item identification and detection that makes use of cutting-edge deep learning algorithms. The primary objective of this project is to develop a dependable and efficient system capable of accurately identifying and recognizing objects in images or video feeds. This system utilizes convolutional neural networks (CNNs), employing advanced architectures such as YOLO (You Only Look Once) or SSD (Single Shot MultiBox Detector), enabling real-time object detection. Finding an object's properties, such as color, texture, shape, or other features, is the first step in the detection process. Using the features mentioned, the system categorizes objects into multiple classes and assigns corresponding labels to each class. To improve object recognition and classification accuracy, the potential research area for innovations and use of more unique deep learning approaches is therefore examined. Model training, optimization, and dataset preparation are important project components. To enable thorough model training, an extensive collection of different datasets representing a broad range of item categories will be selected and annotated. We will use data augmentation and transfer learning techniques to improve the model's performance and generalization in various scenarios and object types. The creation of a software program or framework that incorporates the trained model will be the implementation phase's activity. Images or videos can be used as input for this program.


Keywords


SSD, deep learning, YOLO, object detection, software application, CNN, computer vision

Full Text:

PDF

References


Tengku Azita Tengku Aziz, and Muhammad Syamir Subri. “Footstep power generation using Arduino uno” Cite as AIP Conference Proceeding 2129, 020097(2019); https://doi.org/10.1063/1.5118105. Published Online: 30 July 2019

Alla Chandra Selhar, B Murali Kishore, T Jogi Raju3.” Electromagnetic Foot Stem Power Generation”. International Journal of Scientific and Research Publications, Volume 4, Issue 6, June 2014. ISSN 2250-3153

Mansi C. Meshram, Manjusha B, Mehar, Ankita V. Koparkar, Shubham N. Suryawanshi, Prof. J. Shelke5, Prof. S. Sahastrabudhry6 “FOOTSTEP POWER GENERATION SYSTEM” IJARIIE-ISSN(O)-2395-4396, Vol-5 Issue-2-2019.

Shubha Kumar, Sharad Mittal, Sachine Saini, Vishnu Pal. “Foot Step Conservation System”. International Journal of Scientific & Engineering Research Volume 7, Issue 5, May 2016. ISSN 2229-5518.

G. B. Birajadar (2021). Epilepsy Identification using EEG signal monitoring. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(2), 2366–2371. Retrieved from https://turcomat.org/index.php/turkbilmat/article/view/2022

Birajadar, G., & Bhyri, C. (2020). Comparative survey on EEG analysis for detecting brain disorders. International Journal of Future Generation Communication and Networking, 13(3s), 1253-1257.

Monika S Mali, Shwetali S Phadke, Vaishnavi M Karande, & Ganesh Birajadar. (2023). Power Generation by Footstep. Journal of Energy Engineering and Thermodynamics(JEET) ISSN 2815-0945, 3(03), 22–30. https://doi.org/10.55529/jeet.33.22.30

Akshay G Masa, Shital P Mundlik, Rutuparna R Lawand, & Ganesh B Birajadar. (2022). “Smart Parking Management System” (Based on IOT Modules). Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, 2(06), 8–12. https://doi.org/10.55529/jecnam.26.8.12

Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography-based image authentication on a reconfigurable platform.Bulletin of Electrical Engineering and Informatics,6(2), 181-187.

Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing(pp. 1895-1899). IEEE.

Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of the discrete wavelet transforms for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS)(pp. 3385-3389). IEEE.

Mane, P. B., & Mulani, A. O. (2018). High-speed area efficient FPGA implementation of AES algorithm.International Journal of Reconfigurable and Embedded Systems,7(3), 157-165.

Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2017). Robust invisible watermarking for image authentication. InEmerging Trends in Electrical, Communications, and Information Technologies: Proceedings of ICECIT-2015(pp. 193-200). Springer Singapore.

Mulani, A. O., & Mane, P. B. (2016). Area-efficient high-speed FPGA-based invisible watermarking for image authentication.Indian Journal of Science and Technology.

Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using a machine learning approach. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1 (pp. 43-51). Singapore: Springer Nature Singapore.

Mulani, A. O., & Mane, D. P. (2017). Efficient implementation of DWT for image compression on a reconfigurable platform. International Journal of Control Theory and Applications, 10(15), 1-7.

Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches for Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.

Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. Journal of Science and Technology, 6, 86-89.

Jadhav, M. M. et al (2021). Machine learning-based autonomous fire combat turret. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(2), 2372-2381.

Mane, D. P., & Mulani, A. O. (2019). High throughput and area-efficient FPGA implementation of AES algorithm. International Journal of Engineering and Advanced Technology, 8(4).

Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT‐PCA. Journal of Science and Technology, 6(1).

Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. International Journal of Innovations in Engineering Research and Technology, 6(4), 1-7.

Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. Journal of Algebraic Statistics, 13(3), 173-176.

Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image watermarking using discrete wavelet transform. International Journal of Engineering Research & Technology (IJERT), 4(01), 139-141.

Mulani, A. O., & Mane, D. P. (2018). Secure and area-efficient implementation of digital image watermarking on a reconfigurable platform. International Journal of Innovative Technology and Exploring Engineering, 8(2), 56-61.

Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area-optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.

Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor-based automatic drip irrigation system. Journal for Research, 2(02).

Mulani, A. O., & Mane, P. B. (2019). High-speed area-efficient implementation of AES algorithm on the reconfigurable platform. Computer and Network Security, 119.

Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on the less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.

Takale, S., & Mulani, A. (2022). DWT-PCA Based Video Watermarking. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.

Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.

Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications (pp. 83-100). CRC Press.

Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi-based voice-operated Robot. International Journal of Recent Engineering Research and Development, 2(12), 69-76.

Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT System to Assist COVID Patients and Caretakers. European Journal of Molecular and Clinical Medicine, 3472-3480.

Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, M. A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. International Journal of Information Technology &Amp, 30-43.

Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. Machine Learning Algorithms for Signal and Image Processing, 219-229.

Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. International Journal of Innovations in Engineering Research and Technology, 57-62.

Kamble, A., & Mulani, A. O. (2022). Google Assistant-based device control. Int. J. of Aquatic Science, 13(1), 550-555.

Mandwale, A., & Mulani, A. O. (2015, January). Different Approaches for Implementation of Viterbi Decoder. In IEEE International Conference on Pervasive Computing (ICPC).

Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non‐invasive blood glucose concentration level estimation using PCA and machine learning. The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications. Internet of Things (IoT) and Smart Materials for Energy Applications.

Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN, 2815-0953.

Takale, S., & Mulani, D. A. Video Watermarking System. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.

Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. International Journal of Innovations in Engineering Research and Technology, 2(7), 1-7.

Mandwale, A., & Mulani, A. O. (2014, December). Implementation of Convolutional Encoder & Different Approaches for Viterbi Decoder. In IEEE International Conference on Communications, Signal Processing Computing and Information Technologies.

Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller-Based Automatic Drip Irrigation System. In Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications (pp. 109-115). Springer International Publishing.

Mulani, A. O., & Mane, P. B. (2016), “Fast and Efficient VLSI Implementation of DWT for Image Compression”, International Journal of Control Theory and Applications, 9(41), pp.1006-1011.

Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Image‖. International Journal on Recent & Innovative trend in technology (IJRITT).

Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2022). Python Algorithm to Estimate Range of Electrical Vehicle. Telematique, 7046-7059.

Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysis‖. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.

Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non‐invasive blood glucose concentration level estimation using PCA and machine learning. The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.

Mandwale, A., & Mulani, A. O. (2016). Implementation of High-Speed Viterbi Decoder using FPGA. International Journal of Engineering Research & Technology﴾ IJERT.

Kambale, A. (2023). HOME AUTOMATION USING GOOGLE ASSISTANT. UGC care approved journal, 32(1).

Sawant, R. A., & Mulani, A. O. Automatic PCB Track Design Machine. International Journal of Innovative Science and Research Technology, 7(9).

ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. Design And Implementation Of 8-bit Vedic Multiplier. JournalNX, 24-26.

Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. Artificial Intelligence, Internet of Things (IoT), and Smart Materials for Energy Applications.

Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. International Journal of Science, Engineering and Technology Research.

Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning-based detection of dermatological diseases using convolutional neural networks and decision trees. Treatment du Signal, 40(6), 2819-2825.

Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand Gesture Controlled Robotic System. Int. J. of Aquatic Science, 13(1), 487-493.

Dr. Altaf O. Mulani. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. Journal of Energy Engineering and Thermodynamics(JEET) ISSN 2815-0945, 4(02), 21–28. https://doi.org/10.55529/jeet.42.21.28

Sandeep Kedar and A. O. Mulani (2024), IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming, NATURALISTA CAMPANO, Vol. 28, Issue 1.

Bhanudas Gadade, A O Mulani and A.D.Harale.(2024). IOT-Based Smart School Bus and Student Monitoring System. NATURALISTA CAMPANO, Vol. 28, Issue 1.

Anil Dhanawade, A. O Mulani and Anjali. C. Pise. (2024). Smart farming using IOT-based Agri BOT. NATURALISTA CAMPANO, Vol. 28, Issue 1.

Dr. Shweta Sadanand Salunkhe and Dr. Altaf O. Mulani. (2024). Solar Mount Design Using High-Density Polyethylene. NATURALISTA CAMPANO, Vol. 28, Issue 1.

Mr. Sandeep Kedar, & Dr. Altaaf Mulani. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, 1(02), 33–43. https://doi.org/10.55529/jecnam.12.33.43.

Sarda, M., Deshpande, B., Deo, S., & Karanjkar, R. (2018). A comparative study on Maslow’s theory and Indian Ashrama system.”. International Journal of Innovative Technology and Exploring Engineering, 8(2), 48-50.

Deo, S., & Deo, S. (2019). Cybersquatting: Threat to domain name. International Journal of Innovative Technology and Exploring Engineering, 8(6), 1432-1434.

Shambhavee, H. M. (2019). Cyber-Stalking: Threat to People or Bane to Technology. International Journal on Trend in Scientific Research and Development, 3(2), 350-355.

Deo, S., & Deo, D. S. (2019). Domain name and its protection in India. International Journal of Recent Technology and Engineering.

Sarda, M., Deshpande, B., Deo, S., & Pathak, M. A. (2018). INTELLECTUAL PROPERTY AND MECHANICAL ENGINEERING STUDY EMPHASIZES THE IMPORTANCE OF KNOWLEDGE OF INTELLECTUAL PROPERTY RIGHTS AMONGST MECHANICAL ENGINEERS. International Journal of Social Science and Economic Research, 3(12), 6591-6596.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Trends in Opto-Electro and Optical Communications