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Abstract 
Incident detection in urban arterial situation is more difficult than the similar job in 
freeway situation because of the presence of traffic signals and other intersections with 

associated recurrent queue. Most of the earlier automatic incident detection algorithms 

address mainly freeway situation. This study aims at development, calibration, validation 
and testing of an ANN model for incident detection in Kuala Lumpur (KL) arterials using 

simulated incident database. Database for the study is generated under incident and no-
incident condition by simulating the traffic flow through the arterial network of Golden 

Triangle area of KL. Calibration efforts are divided into different tasks such as the time 

interval for input neuron, recalculation interval, location of the detector and the 
threshold values for the model. The calibrated model for optimum location of detector 

yields 98.5% of detection rate and 2.9% of false alarm rate for normal traffic demand 

situation. It is found that in case of link longer than 350 m data from two detectors are 
required for better performance of the ANN model but a single detector data is good 

enough for link length of around 220 m or less. Testing of the model on other link sites 
also yields similar results with more accurate detection in case of shorter links. While one 

cycle time was found to be long enough as a recalculation interval, further sensitivity 

analysis on this revealed that lower cycle time of around 60 s degrades the performance 
of the model in terms of false alarm rate. The results from this study provide useful 

insights for the design of AID system in urban arterials.  
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INTRODUCTION 
Significant traffic delay in urban freeways and 

arterials is caused by non-recurring congestion 

initiated by incident of some sort. The incident 

type includes accident, vehicle disablements, 

flat tires, adverse weather condition, road 

maintenance activities and other events that 

obstruct the normal traffic flow and result in a 

capacity reduction. In order to reduce the 

adverse impact brought about by incidents, it 

is important to be able to know the occurrence 

of an incident as soon as possible. In large 

urban arterial network like Kuala Lumpur 

(KL) early detection of incidents can reduce 

the frequency of network wide flow 

breakdown. Automatic incident detection 

(AID) model on freeways has been developed 

since the early 1970s and their structure varies 

in the degree of sophistication, complexity and 

data requirements and can generally be 

grouped into categories, namely, simple 

filtering [1], comparative or pattern 

comparison algorithms [2–4], traffic model 

and theoretical algorithms [5], time series 

algorithms, statistical algorithms [6] and 

neural networks [7, 8]. Comparing among 

three types of neural network models, namely, 

the multi-layer feed forward (MLF), the self-

organizing feature map (SOFM) and adaptive 

resonance theory 2 (ART2), it was claimed 

that MLF has the highest potential to achieve a 

better incident detection performance [9]. 

MLF was also reported to be outperforming 

California, McMaster and Minnesota 
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algorithms in the same study. More recently, 

Hussein and Rose [10] developed and 

evaluated a neural network model on freeway 

incident detection using field data of 100 

incidents. Their model used speed, flow and 

occupancy data as the input to neuron. The 

results obtained proved that neural network 

models can provide reliable incident detection 

on freeways. But incident characteristics and 

mechanism on urban arterials are significantly 

different from those on freeways due to 

differences in access, geometric constraints, 

control measures, operating conditions and 

surveillance infrastructures [11]. William and 

Koppelman investigated the effectiveness of 

individual vehicle movement measures in the 

detection of incidents on urban arterial road 

segments using vehicle-positioning data with 

only modest success [12]. Traffic dynamics in 

average speed, running time, speed and 

coefficient of variation of speed calculated 

from vehicle positioning data are used in the 

study for identifying incidents on link. Many 

practitioners find AID too problematic for 

implementation in large urban environments 

[13] due to high false alarm rate resulting from 

stop-and-go traffic in urban arterial situation. 

Using the simulation data, Sethi et al. 

developed two threshold parameters for 

incident detection on urban arterial: volume 

divided by occupancy from fixed traffic 

detector data and average speed using probe 

vehicle data [14]. Performing a case study on 

an arterial road in Melbourne, Australia, Luk 

and Chung [11] showed that detectors 

upstream of an incident are more useful for 

incident detection than downstream detectors. 

The study also identified occupancy and speed 

as the appropriate parameters to characterize 

and detect arterial incidents.  

 

Khan and Richie  compared the efficiency of 

neural network and other statistical classifiers 

in detecting incidents on urban arterials and 

claimed that modular neural classifier 

outperformed other statistical classifiers. It is 

also suggested that incident detection depends 

on factors such as operating conditions, 

configuration of sensors within the network, 

and block or link length. Hawas (2007) 

commented that detecting incidents on urban 

streets or arterials using loop detector data is 

quite challenging. The pattern of the incident 

might vary significantly due to several factors 

including the average flow rate, the link 

length, the detectors’ locations, the incident 

location with respect to the detectors’ 

locations, the degree of link blockage by the 

incident, the green time of the downstream 

signal and the cycle length. Using fuzzy logic 

for incident detection, the study suggested 

further research on issues of optimal number 

of detectors, and relationship between 

numbers of detectors and their locations vis-à-

vis the effectiveness of the devised logic [15]. 

In absence of real incident data in most cases, 

development of simulated database is 

necessary to investigate the detailed 

characteristics of these incident detection 

model variables and the relevant factors 

influencing the performance of the model.  

 

Considering the successful utilization of neural 

network approach to model the incident 

detection of freeways and arterials, this 

research will use the MLF neural classifiers in 

studying the factors influencing the incident 

detection performance of the model. While 

neural network is an extensive data-based 

modeling technique, authentic incident data 

and associated other data items are not 

available for the study area of KL. 

Microscopic traffic simulation model MITSIM 

developed at MIT, USA, can simulate 

incidents with stochastic characteristics close 

to real life incidents [16–18]. As a part of KL 

intelligent transport system (ITS) initiative, 

MITSIM is calibrated and validated for a 

portion of KL arterial network. Therefore, a 

simulated incident database can be created for 

developing and testing the ANN incident 

detection model under various situations. This 

paper presents development, calibration, 

validation and testing of the artificial neural 

network (ANN) model for incident detection 

on urban arterial as well as applications for 

detailed study of the factors influencing the 

performance of such ANN model.  

 

METHODOLOGY  
This paper reports on the application of MLF 

ANN model to study the factors influencing 

the performance of incident detection model 

on urban arterials. In this section, ANN 

modeling scheme and model performance 

measures will be described. 
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ANN Model 

Multi-layer feed-forward neural network was 

successfully used for incident detection 

models in freeway situations using both 

simulated and real field data. In this study, 

similar MLF neural net model is developed for 

the more complex traffic, geometric and 

control environment of urban arterial network 

in comparison to the freeway. The MLF 

consists of processing elements (PEs) arranged 

in three layers: the input layer, a hidden layer 

and the output layer. The input layer consists 

of data from loop detectors on the roads, 

hidden layer processes data and output layer 

gives an incident or incident-free signal. 

Supervised training which involves letting the 

network know if its output matches the correct 

condition is carried out in order to obtain a 

stable network. Through training, the network 

learns the appropriate weights to apply to the 

inputs and outputs. As most of the existing 

detection tools report three traffic variables of 

speed, flow and occupancy, all of them are 

used as input variables in the present study 

considering the complexity of identification in 

urban arterial situations. As detectors are lane 

based each lane will introduce three input 

neurons at the input layer of the network. The 

number of neurons in hidden layer and their 

connection architecture with input and output 

layer can be calibrated towards a suitable 

figure after experimenting with different 

numbers and architectures. For the present task 

of incident detection the output layer can be 

consisted of one neuron indicating incident or 

no-incident condition.  

 

The ANN architecture taken for the present 

research study is shown in Figure 1. The 

network consists of lane-based input data such 

as count, speed and occupancy at the input 

layer requiring three input neurons per lane per 

location considered. This means, for a three 

lane road and inclusion of data from a pair of 

detectors in the link, will result 18 input 

neurons as in the case of present study. After a 

few experiments, it is found that number of 

neurons in excess of 80 in the hidden layer 

only result little or no improvement in network 

estimation efficiency. The output layer 

consisting of one neuron is required to provide 

a state value indicating incident or no-incident 

condition. 

 

 
Fig. 1: Schematic of MLF Type ANN Model Used in the Study. 
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Model Performance Measures 

Generally, the performance of an AID 

algorithm can be measured by using three 

basic measures of effectiveness (MOEs): false 

alarm rate (FAR), detection rate (DR) and 

mean time to detect (MTTD). DR and FAR 

measure the effectiveness of an algorithm, 

whereas MTTD measures the efficiency of the 

algorithm (Thomas and Dia, 2000; Rakha and 

Aerde, 1996). They are defined as follows: 

False alarm rate: FAR may be defined as the 

percentage of incorrect detections to the total 

number of algorithm applications to incident-

free data set. However, in this project, the 

FAR is defined as: 

 
 

Detection rate: DR is defined as the percentage 

of number of detected incidents to the actual 

number of incident in the data set. In other 

words, it can also be defined as the percentage 

of actual incidents which are detected by the 

algorithm out of all the true incidents that have 

been reported during a time period.  

 
 

Mean time-to-detection: Mean time-to-

detection (MTTD) is computed as the average 

time elapsed between the time the incident 

started and was detected. Since the reporting 

interval is cyclic, TTD is expressed in cycles. 

This interval could vary depending on the base 

cycle length in place. However, in this 

research, MTTD would not be used as one of 

the performance measures because for arterials 

the recalculation interval would be a function 

of traffic signal cycle time and hence would 

affect the MTTD without any relevance to the 

algorithm efficiency. 

 

Data Generation 

This section describes the street network under 

study and application of MITSIMLab 

simulation model to the study network for 

generating the data required for the present 

modeling study.  

 

Study Network 

Golden Triangle road network of Kuala 

Lumpur (shown in Figure 2) is calibrated by 

the MITSIM research group at Malaysia 

University of Science and Technology 

(MUST) and it is taken as the network for 

present study. For the purpose of detailed 

modeling Jalan Sultan Ismail corridor has been 

chosen as the area of study. The details of 

Sultan Ismail corridor including the possible 

location of the detectors and incidents are 

shown in Figures 3 and 4. In a typical link, 

four locations of detectors and incidents are 

taken to be investigated in the present study 

with various combinations of detector data sets 

as shown in Tables 1 and 2. 

 

 
Fig. 2: Schematic of Golden Triangle Road Network from MITSIM Simulation Display (Sultan Ismail 

Corridor Marked in the Circle). 
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Fig. 3: Details of Jalan Sultan Ismail Corridor. 

  

 
 

Fig. 4: Link of Detailed Study with Detector Pairs. 

 

Table 1: Characteristics of the Road in the Corridor of Jalan Sultan Ismail. 
Item Link 

Uplink Link of interest Downlink 

Length   220 m 469 m 370 m 

Width  2 lanes each way 3 lanes each way 3 lanes each way 

Speed limit  55 km/h 55 km/h 55 km/h 

Mean free flow speed 65 km/h 65 km/h 65 km/r 

Location of 

incident 
 

Distributed equally at L1, 

L2, L3 and L4 
 

Location of sensor 100 m away from traffic 

signal 

Every 100 m away from 

traffic signal 
- 

Type of sensor Lane based Lane based Lane based 

Accuracy of  sensor 100% 100% 100% 

Data output 

 from sensor 
Count, speed, occupancy Count, speed, occupancy 

Count, speed, 

occupancy 

Incident characteristic 

- 

Incident lane fully blocked 

while non-incident lane 

partially blocked 

- 

  

 Table 2: Traffic Signal Characteristics. 
Item Uplink Link of interest Downlink 

Duration of total green phase 45 s 45 s 50 s 

Duration of total amber phase 3 s 3 s 3 s 

Duration of red phase 105 s 101 s 101 s 

Total cycle time 153 s 149 s 154 s 

Number of phases 2 3 4 
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Microscopic Simulation  

MITSIMLab is a microscopic traffic 

simulation laboratory that is developed to 

evaluate advanced traffic management systems 

(ATMS) and advanced traveler information 

systems (ATIS) at the operational level. A 

wide range of traffic management systems and 

the response of drivers to real-time traffic 

information and control can be modeled in 

MITSIMLab. By using microscopic traffic 

simulator in this study, a traffic network can 

be simulated under a controlled environment. 

Loop detectors, incident location and the time 

period where the incident occurs and also the 

severity and duration of the incidents can be 

assigned easily to the network. For training of 

the model, data has been generated for a total 

of 180 simulated hours with 100 incidents. But 

for calibration purpose, data set comprises a 

total of 540 simulated hours with 300 

incidents. Also another data set comprising 72 

simulated hours with 40 incidents is used for 

testing the model and studying the factors 

influencing the performance of the model. The 

design of data set generation from simulation 

lab is presented in Table 3. Different durations 

of incidents in the range of 15 to 30 min are 

simulated under different traffic demand 

conditions with each set of data generated 

from 18 h of simulation runs. 

 

Table 3: Simulated Incident Characteristics for Training, Calibration and Validation Data Set  

(Each set Represents 18 h of Simulation Run). 

Data division Traffic demand 
Number of 

incidents 

Duration of 

incidents (min.) 

No. of incidents 

at different 

durations 

Training data (10 

sets and 100 

incidents) 

Low 40 

15 10 

20 10 

25 10 

30 10 

Normal 20 

15 5 

20 5 

25 5 

30 5 

High 40 

15 10 

20 10 

25 10 

30 10 

Calibration data 

(30 sets and 300 

incidents) 

Low 

116 15 46 

 20 30 

 25 22 

 30 18 

Normal 

68 15 28 

 20 20 

 25 12 

 30 10 

High 

116 15 42 

 20 36 

 25 26 

 30 10 

Validation data 

(10sets and 100 

incidents) 

Low 

35 15 8 

 20 9 

 25 9 

 30 9 

Normal 

30 15 7 

 20 7 

 25 8 

 30 8 

High 

35 15 8 

 20 9 

 25 9 

 30 9 
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Model Development 

This section studies the incident detection 

model parameters. It also discusses the model 

building, training and calibration using the 

above described MITSIMLab generated 

simulation database.  

 

Incident Detection Parameters 

In the present study, speed, volume and 

occupancy data for each lane averaged over a 

signal cycle has been used as basic input data. 

The purpose of setting the data interval similar 

to the traffic light cycle time is to overcome 

the problem of the effect resulted by the traffic 

light. This is because, if the interval is not 

taken at least equal to a full cycle, it would 

happen that the data collected are under the red 

light conditions when all the vehicles need to 

stop/slow down without any regard to incident. 

The performance of the network would be 

greatly affected being confused between the 

red light stop and stop due to incident. 

However, the effect of other recalculation 

interval as multiple of the signal cycle will 

also be checked later. Two data input schemes 

will be employed: one comprising data points 

at time t only; another comprising data points 

at time t and t−1 intervals. Input data vector 

from pairs of detectors as well as from single 

detector would be tested which are illustrated 

as different combinations of input data source, 

i.e., detectors in the detailed corridor diagram 

(Figure 4). Persistence of incident state will 

also be checked in the subsequent intervals in 

order to be certain about the case of an 

incident and thus reducing the higher false 

alarm rate from possible traffic noises at 

upstream of a traffic signal.  

 

ANN Training 

Under the supervised training, data generated 

from MITSIMlab under incident and non-

incident conditions are presented to the 

network with corresponding desired state 

value. This supervised training is also called 

back propagation training because the 

information is going from input layer, passing 

through hidden layer, to output layer and the 

information reverse back from output to input 

layer as a function of estimation error. This 

process is repeated and the information used 

for training is propagated. After training, the 

network is stable and it should have the ability 

to produce the correct output vector which 

indicates incident or incident-free conditions 

in this case. Two output states are used to 

describe the traffic conditions within the 

section of link under consideration: state 1 

with introduced state value of 0 to represent 

incident-free conditions and state 2 with 

introduced state value of 1 to represent 

incident conditions. In order to improve the 

robustness of the model in detecting incident 

under diverse condition, data set used for 

training are generated from a wide range of 

road conditions such as different flow, traffic 

periods, duration and severity of incidents. In 

the present study, the training data have been 

iteratively presented to the ANN for 450 

cycles. During each of the iteration, sum of 

squared of errors (SSE) will be reduced 

gradually until it reaches a minimum point 

which is set at zero in the present case. When 

SSE becomes zero, it means that all the 

weights in the network have already 

converged and it is considered as stable and at 

optimal state. So the neural network has 

already learned and memorized the 

relationship between the input and output data. 

Activation functions are the mathematical 

transfer functions that determine which group 

of the data is given the most emphasis. In this 

research, logistic activation function is used 

because all the data is treated equally during 

training of neural network for incident 

detection. Also as a learning process during 

training scaled conjugate gradient is used in 

the present study considering the claim of its 

better performance (Bishop C, 1995). For 

details of the mathematical mechanisms of 

training procedure readers may refer to this 

study [9].  

 

However, before the process of training, 

normalization of the data needs to be carried 

out. This is because count in number of 

vehicles, speed is km per hour and occupancy 

in percentage of time have different values 

which are different by several orders of 

magnitude and the typical sizes of the inputs 

may not reflect their relative importance in 

determining the required outputs. Through 

normalization or linear transformation, all of 

the inputs can be arranged to have similar 

values and the speed for training is increased. 

Normalization is performed by finding the 
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mean and standard deviation for the input data 

as shown in equations below: 
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Then each of the data can be transformed into 

new representation through equation below: 
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where, n = 1, 2, 3,…N (number of the data) 

and  i in this case is count/speed/occupancy. 

 

 
Fig. 5: Validation of the Calibrated Model. 

 

Model Calibration and Validation 

After development and training of the neural 

network for automatic incident detection on 

arterial, calibration needs to be done in order 

to obtain an optimal and mature network. 

Besides, the purpose of calibration is to 

explore the relationship of each parameter 

involved in the incident detection model so 

that it could be understood better. Calibration 

is done on the selection of input data, 

recalculation interval of data, different 

placement of detector and the threshold value 

for output evaluation. 

 

The investigation reveals that input data to the 

model should comprise only the present data 

interval. The performance of the neural 

networks is worse when input data is taken 

from both previous and present intervals. The 

results as presented in Table 4 show that 

although for both input data schemes detection 

rates (DRs) are acceptable the false alarm rates 

(FARs) for input data including previous 

period are too high. It is probably due to the 

fact that data sets including the previous cycle 

data may make the network confused and 

hence it fails to find out an optimal 

relationship from them. Besides, in cases of 

freeway, input with previous data would be 

more useful because the data reporting interval 

would be as small as 30 to 60 s, so the data 

represent traffic pattern of short duration only, 

which in most cases remains similar. 

Therefore, in the present study, it is decided to 

use the data at the present time interval as 

input to the neuron for the neural network to 

identify incident or no-incident condition.  

 

Table 4: Calibration on Data Set Selection. 

Input types 

Detection 

outputs 

 

Detector Combinations 

A B C D E F I 
Single

_J 

Inputs of data 

interval t 

Total incidents 300 300 300 300 300 300 300 300 

Total false 

alarms 
115 81 102 84 54 227 264 303 

Total 

detections 
258 268 276 273 285 231 229 230 

DR 86.0 89.3 92.0 91.0 95.0 77.0 76.3 76.7 

FAR 30.8 23.2 27.0 23.5 15.9 49.6 53.5 56.8 

Inputs of data 

interval t, t−1 

Total incidents 300 300 300 300 300 300 300 300 

Total false 

alarms 
845 253 249 261 170 876 148 235 

Total 

detections 
298 283 264 288 276 243 250 231 

DR 99.3 94.3 88.0 96.0 92.0 81.0 83.3 77.0 

FAR 73.9 47.2 48.5 47.5 38.1 78.3 37.2 50.4 
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Considering the detector location, combination 

E yields the best result among all the 

placements of detectors with 95.0% of 

detection rate and 15.9% of false alarm rate 

(Table 4). Taking input data at present time 

interval, one cycle of recalculation interval and 

detectors placed at combination E, the effect of 

output layer threshold value is studied. The 

performance of the model with different 

threshold is shown in Table 5. 

 

From Table 5, it is found that the difference in 

threshold value from 0.1 to 0.9 does not bring 

much effect to the performance of the 

detection rate. The entire detection rate is 

around 95%. Therefore, a threshold value of 

0.5 would be chosen since all the threshold 

value’s performance beyond that value is quite 

close. 

 

With all the optimal parameters, validation of 

the model is again carried out by using a new 

set of simulated data. Ten sets of new data are 

generated from the same Jalan Sultan Ismail 

corridor and the data with the parameters 

suggested are used. Table 6 and Figure 5 show 

the result of the validation using the suggested 

parameters which shows consistent 

performance of the network with the new data 

set even at all threshold value levels. 

 

Table 5: Performance of the Model with Calibrated Parameters for Detector Combination E. 

Threshold Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Total incidents 300 300 300 300 300 300 300 300 300 

Total false alarms 61 57 55 55 54 52 50 50 47 

Total detections 287 286 286 285 285 285 285 285 285 

Detection rate 95.7 95.3 95.3 95.0 95.0 95.0 95.0 95.0 95.0 

False alarm rate 17.5 16.6 16.1 16.2 15.9 15.4 14.9 14.9 14.2 

  

Table 6: Result of the Validation Process Using Suggested Parameters. 
Threshold value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Total incidents 100 100 100 100 100 100 100 100 100 

Total false alarms 20 18 18 18 18 17 15 15 13 

Total detections 96 95 95 94 94 94 94 94 94 

Detection rate 96.0 95.0 95.0 94.0 94.0 94.0 94.0 94.0 94.0 

False alarm rate 17.2 15.9 15.9 16.1 16.1 15.3 13.8 13.8 12.2 

  

Factors Influencing the Performance of 

ANN Model 

This paper investigates the factors influencing 

the performance of incident detection model of 

ANN type. The factors considered to be 

affecting the performance of incident detector 

may include the average flow rate, the link 

length, the detectors’ locations, the incident 

location with respect to the detectors’ 

locations, the degree of link blockage by the 

incident, data interval and the signal cycle 

length.  

Flow Rate 

For testing the performance of the model 

under varying demand, traffic demand is 

classified into three groups: the volume below 

600 vehicles per lane is categorized as low 

demand period; volume in the range of 600 to 

1100 vehicles per lane is considered as normal 

demand period and volume of more than 1100 

vehicles per lane is classified as high demand 

period. 

Table 7: Sensitivity Analysis on Demand variation (1 cycle of data interval at ComE). 

Low Demand 
Detection Rate 89.6 

False Alarm Rate 29.7 

Normal demand 
Detection rate 98.5 

False alarm rate 2.9 

High demand 
Detection rate 98.3 

False alarm rate 6.6 

Overall result 
Detection rate 95 

False alarm rate 15.9 
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Table 7 shows the performance of the neural 

network with the best loop detector 

combination under different demand period by 

using one cycle of recalculation interval. 

During low demand, the detection rate is 

89.65% with a false alarm rate of 29.73%. For 

normal demand, detection rate is 98.53% with 

false alarm rate 2.9% whereas for high 

demand, detection rate is 98.28% and false 

alarm rate is 6.577%. The algorithms raised 

more false alarms during low demand and this 

could be due to the relatively inconsistent 

queue length during low flow period. During 

high demand, the performances of the neural 

networks are better compared to low demand. 

This is due to the fact that when incident 

happens during high flow, the effect of that is 

more prominent in comparison to the similar 

situation under low demand. However, as 

predictable the performance of the ANN 

model is best under normal demand as this 

period is supposed to present relatively 

consistent data to the model.  

 

Link Length 

The calibrated ANN model is tested on 

different lengths of the links under normal 

traffic condition: one of 220 m length with 

location of the detectors as shown in Figure 6, 

where the downstream detectors, are 100 m 

away from traffic signal and the upstream 

detectors are 100 m apart as the link is short; 

one of 370 m length with detectors as 

indicated in Figure 7 and another of 469 m 

length as shown earlier in Figure 3 for the case 

of combination E. 

 

 
Fig. 6: Location of Detectors Pair in 220 m Link. 

 

 
Fig. 7: Location of Detectors Pair in 370 m Link. 
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The performances of the neural networks 

under different link lengths (typical of the 

study area) are shown in Table 8. DR and FAR 

are the best for shortest link of 220 m yielding 

97.5% of detection rate and 2.5% of false 

alarm rate. This is because in shorter links 

incidents are more likely to be closer to the 

detectors, and hence more likely to be detected 

correctly. For the other two links of higher 

length, DR and FAR values are similar.  

 

Recalculation Interval 

Recalculation interval is the time interval that 

the detectors report the field data to the neural 

network model. Investigation is carried out in 

order to find out the most suitable 

recalculation interval for the detectors to report 

the data – count, speed and occupancy to the 

neural network. In this study, one cycle, two 

cycles and three cycles of the traffic light 

timing have been experimented as the 

recalculation interval considering the fact that 

any interval less than a cycle will not be able 

to avoid the traffic light interferences.  

 

From the results as shown in Table 9, it can be 

observed that with increase in recalculation 

interval DR is lowered marginally but 

significant improvement is achieved in 

lowering the FAR. This is due to the fact that 

with longer data interval, chances of small 

duration traffic noises appearing as incidents 

are reduced. 

 

Table 8: Results under Different Lengths of Link. 

Link length 220m 370m 469m 

Total incidents 40 40 300 

Total false alarms 1 6 54 

Total detections 39 38 285 

DR 97.5 95.0 95.0 

FAR 2.5 13.6 15.9 

 

Table 9: Results for Various Combinations of Detectors Pair at Different Recalculation Intervals.  
Data 

interval 
Detector pair ComA ComB ComC ComD ComE ComF ComI ComJ 

149 s 

(1 cycle) 

Total incidents 300 300 300 300 300 300 300 300 

Total false alarms 115 81 102 84 54 227 264 303 

Total detections 258 268 276 273 285 231 229 230 

DR 86 89.33 92 91 95 77 76.33 76.67 

FAR 30.8 23.2 27.0 23.5 15.9 49.6 53.5 56.8 

298 s 

(2 cycles) 

Total incidents 300 300 300 300 300 300 300 300 

Total false alarms 27 16 17 13 4 89 61 93 

Total detections 258 279 278 276 282 216 223 222 

DR 86 93 92.67 92 94 72 74.33 74 

FAR 9.5 5.4 5.7 4.5 1.4 29.2 21.5 29.5 

447 s 

(3 cycles) 

Total Incidents 300 300 300 300 300 300 300 300 

Total false alarms 8 8 3 6 7 40 9 55 

Total detections 265 242 260 269 268 217 226 223 

DR 88.3 80.7 86.7 89.7 89.3 72.3 75.3 74.3 

FAR 2.9 3.2 1.4 2.2 2.5 15.6 3.8 19.8 

  

Cycle Time 

In order to test the ANN model under different 

signal cycle times, 14 sets of new data (as the 

earlier data sets are generated using existing 

signal cycles and hence do no provide a 

suitable data set for testing the cycle time 

variation) each representing 18 h of simulation 

run under normal demand flow are generated 

with signal cycles in the range of 60 to 180 s. 

From the data collected, 10 sets are used for 

training while 4 sets are used for testing for 

each cycle time. The results of the experiment 

are shown in Table 10, which reveals that the 

suggested neural network parameters are 
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suitable to be used under different cycle 

timings as long as the network learns from the 

situation. In all the cycle timings, the neural 

networks have a very high detection rate and 

low false alarm rate in cases of 90, 120 and 

180 s. The false alarm rate for 60 s is relatively 

higher which is a more difficult case for the 

ANN, due to the relatively frequent queuing 

and thus making the ANN confused in 

mapping out the pattern. Consequently, more 

false alarms are raised.  

 

Table 10: Results under Different Cycle Timing.  

Cycle time 60 s 90 s 120 s 180 s 

Total incidents 40 40 40 40 

Total false alarms 16 4 0 0 

Total detections 39 39 38 39 

DR 97.5 97.5 95 97.5 

FAR 29.1 9.3 0 0 

 

Detector Location 

When using two sets of detectors per link lane, 

there might be a number of combinations of 

detector locations for the relatively longer link 

length as shown in Figure 3 for link length of 

469 m. For such a link, combination E yields 

the best result as shown in Table 9. The 

authors have also considered four different 

detector locations when using a single detector 

per link lane as shown in Figure 8. The results 

in case of the four detector locations are 

presented in Table 11. Therefore, for relatively 

longer link length (here 469 m), single 

detector is not effective in detecting incident. 

For shorter link lengths of 220 and 370 m, the 

authors have tested the single detector location 

at about the middle of the link. The relevant 

results in Table 12 show that single detector is 

only effective at about 220 m length. With two 

sets of detectors per link lane highest DR and 

lowest FAR are achieved in case of shortest 

links of about 200 m length, but for longer link 

length around or over 370 m, both DR and 

FAR achieved are similar and still within 

acceptable range.  

 

 
Fig. 8: Possible Locations of Single Detector Set.  

 

Table 11: Performance of Single Location Model for 469 m Link. 

Item Single A Single B Single C Single D 

Total incidents 300 300 300 300 

Total false alarms 416 186 303 456 

Total detections 201 253 230 186 

Detection rate 67.0 84.3 76.7 62.0 

False alarm rate 67.4 42.7 56.8 71.3 
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Table 12: Result for Single Location of Detectors in 220 m and 370 m Link Length. 
Item 220 m 370 m 

Total incidents 40 40 

Total false alarms 0 40 

Total detections 40 34 

DR 100.0 85.0 

FAR 0 54.0 

 

CONCLUDING REMARKS 
This study has identified the factors 

influencing the performance of neural network 

incident detection model and demonstrated the 

influence range of those factors on the 

performance of such incident detection model. 

Although the calibrated model for optimum 

location of detector may yield 98.5% of 

detection rate and 2.9% of false alarm rate for 

normal traffic demand situation, its 

performance may be down drastically under a 

different setting of influencing factors. Under 

all optimum setting but at a low demand 

period, ANN model results in high FAR. 

Similarly, FAR is also on the higher side 

during high demand period although it is 

considerably lower than that of low demand 

period. Therefore, some verification aid like 

traffic video wall on top of AID system is 

required to be active during these two periods 

to avoid attending to false alarm cases. With 

two detector sets per link lane, all the link 

lengths under study can be covered for 

incident detection with acceptable results; 

however, highest DR and lowest FAR are 

achieved in case of shortest link. 

Recalculation, i.e., data reporting interval may 

be as high as three times of traffic light cycle 

with marginally lower DR and considerably 

lower FAR for increasing data interval. This 

will offer leverage to the AID system design in 

terms of selecting different data 

communication technology with different cost 

implications. Experiment with varying cycle 

time data shows that ANN model has a very 

high detection rate and low false alarm rate in 

cases of 90, 120 and 180 s of cycle time. 

However, FAR in case of 60 s cycle time is 

relatively higher, as frequent queuing might 

confuse ANN in mapping out the pattern with 

resulting higher false alarm rate. 

Experimentation with detector location 

suggests that detector should be placed at 

places outside of the consistent queuing area 

and in case of more than one detector per link 

lane they should be evenly distributed over the 

length outside of the queuing area. When 

using single detector, only the shorter link 

length of about 220 m can be detected very 

effectively; however, in case of link length 

increase to about 370 m with single detector 

FAR increases to unacceptable proportion 

while DR is still acceptable. Based on the 

average of these two length cases, it may be 

suggested that effective detectable range for a 

detector is about 150 m. 

 

Detailed understanding of the factors 

influencing the performance of incident 

detection model might be useful in designing 

the AID system under a particular road 

geometry and traffic control arrangements. 

Also the same knowledge base may be helpful 

in incident assessment and subsequent incident 

management planning. While this study has 

investigated the case of ANN model, similar 

detailed investigations should be carried out 

for other AID models and algorithms.  
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