Open Access Open Access  Restricted Access Subscription or Fee Access

Low-frequency Vibration-assisted Welding: A Review of Recent Developments

Rajeev Ranjan, Sanjay Kumar Jha

Abstract


Low-frequency vibration-assisted welding is a promising technique for improving the quality of welds. This article provides a comprehensive review of recent developments in this field. The basic principles of low-frequency vibration-assisted welding is introduced, and the advantages and limitations of this
technique are discussed. Various types of low-frequency vibration-assisted welding methods are presented, including ultrasonic vibration-assisted welding, mechanical vibration-assisted welding, and electromagnetic vibration-assisted welding. The effects of low-frequency vibration on the vibration-assisted welding process, such as changes in microstructure, mechanical properties, and
residual stress distribution, are described. The article also discusses the challenges associated with implementing low-frequency vibration-assisted welding in industrial settings, such as the need for specialized equipment and the potential for increased production costs. The purpose of current state
of research on low-frequency vibration-assisted welding, highlighting the areas that require further investigation. It is expected that this review will provide researchers and engineers with a better understanding of the potential of low-frequency vibration-assisted welding and encourage further research in this promising field.


Keywords


Low-frequency vibration welding, ultrasonic vibration, mechanical vibration, electromagnetic vibration, microstructure, mechanical properties

Full Text:

PDF

References


Kumar S, Wu CS. Review: Mg and its alloy: scope, future perspectives and recent advancements in welding and processing. J Harbin Inst Technol (New Educ). 2017; 24: 1–37.Kumar S, Wu CS (2017) Review: Mg and its alloy—scope, future perspectives and recent advancements in welding and processing. J Harbin Inst Technol (New Ed) 24:1–37

Seyyed Afghahi SSS, Jafarian M, Paidar M, Jafarian M. Diffusion bonding of Al 7075 and Mg AZ31 alloys: process parameters, microstructural analysis and mechanical properties. Trans Nonferrous Met Soc China. 2016; 26 (7): 1843–1851. doi: 10.1016/S1003-6326(16)64295-4.Afghani SSS, Jafarian M, Paidar M, Jafarian M (2016) Diffusion bonding of Al 7075 and Mg AZ31 alloys: process parameters, microstructural analysis and mechanical properties. Trans Nonferrous Met Soc China 26:1843–1851

Atabay SE, Esen Z, Dericioglu AF. Effect of Sn alloying on the diffusion bonding behavior of Al-Mg-Si alloys. Metall Mater Trans A. 2017; 48 (7): 3181–3187. doi: 10.1007/s11661-017-4089-7.Atabay SE, Esen Z, Dericioglu AF (2017) Effect of Sn alloying on the diffusion bonding behavior of Al-Mg-Si alloys. Metall Mater Trans A 48:3181–3187

Gao Q, Meco S, Wang K, Guo S. Light-weight Mg/Al dissimilar structures welded by CW laser for weight saving applications. In: Advanced computational methods in life system modeling and simulation. Singapore: Springer; 2017. pp. 349–357. doi: 10.1007/978-981-10-6370-1_35.Gao Q, Meco S, Wang K, Guo S (2017) Light-weight Mg/Al dissimilar structures welded by CW laser for weight saving applications. In: Advanced computational methods in life system modeling and simulation. Springer, Singapore, pp 349–357

Islam MR, Ishak M, Shah LH, Idris SRA, Meriç C. Dissimilar welding of A7075-T651 and AZ31B alloys by gas metal arc plug welding method. Int J Adv Manuf Technol. 2017; 88 (9–12): 2773–2783. doi: 10.1007/s00170-016-8993-6.Islam MR, Ishak M, Shah LH, Idris SRA, Meriç C (2017) Dissimilar welding of A7075-T651 and AZ31B alloys by gas metal arc plug welding method. Int J Adv Manuf Technol 88:2773–2783

Singh K, Singh G, Singh H. Review on friction stir welding of magnesium alloys. J Magnes Alloys. 2018; 6 (4): 399–416. doi: 10.1016/j.jma.2018.06.001.Singh K, Singh G, Singh H (2018) Review on friction stir welding of magnesium alloys. J Magnes Alloy,6:399-416

Sun Z, Wu CS, Kumar S. Determination of heat generation by correlating the interfacial friction stress with temperature in friction stir welding. J Manuf Process. 2018; 31: 801–811. doi: 10.1016/j.jmapro.2018.01.010.Zhen S, Wu CS, Kumar S (2018) Determination of heat generation by correlating the interfacial friction stress with temperature in friction stir welding. J Manuf Process 31:801–811

Anil Kumar KS, Murigendrappa SM, Kumar H. A bottomup optimization approach for friction stir welding parameters of dissimilar AA2024-T351 and AA7075-T651 alloys. J Mater Eng Perform. 2017; 26 (7): 3347–3367. doi: 10.1007/s11665-017-2746-z.Anil Kumar KS, Murigendrappa SM, Kumar H (2017) A bottomup optimization approach for friction stir welding parameters of dissimilar AA2024-T351 and AA7075-T651 alloys. J Mater Eng Perform 26:3347–3367

Liu XC, Sun YF, Morisada Y, Fujii H. Dynamics of rotational flow in friction stir welding of aluminium alloys. J Mater Process Technol. 2018; 252: 643–651. doi: 10.1016/j.jmatprotec.2017.10.033.Liu X, Sun Y, Morisada Y, Fujii H (2018) Dynamics of rotational flow in friction stir welding of aluminium alloys. J Mater Process Technol 252:643–651

Regev M, Rashkovsky T, Cabibbo M, Spigarelli S. Microstructure stability during creep of friction stir welded AA2024-T3 alloy. J Mater Eng Perform. 2018; 27(10): 5054–5063. doi: 10.1007/s11665-017-3122-8.Regev M, Rashkovsky T, Cabibbo M, Spigarelli S (2018) Microstructure stability during creep of friction stir welded AA2024-T3 alloy. J Mater Eng Perform:1–10

Zhang Y, Wu L, Guo X, Kane S, Deng Y, Jung Y et al. Additive Manufacturing of Metallic Materials: A Review. J Mater Eng Perform. 2018;27(1):1–13. doi: 10.1007/s11665-017-2747-y.Shanavas S, Edwin Raja Dhas J, Murugan N (2018) Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding. Int J Adv Manuf Technol 95:4535–454

Moradi M, Meiabadi MS, Demers V. A numerical investigation of friction stir welding parameters in joining dissimilar aluminium alloys using finite element method. Int J Manuf Res. 2021; 16 (1): 32–51. doi: 10.1504/IJMR.2021.114003.Moradi, M., Shaikh Mohammad Meiabadi, M. S. & Demers (2021) A numerical investigation of friction stir welding parameters in joining dissimilar aluminium alloys using finite element method. International Journal of Manufacturing Research, vol. 16, no. 1, pp. 32 -51.

Tarn T-J, Chen S-B, Chen X-Q. Robotic welding, intelligence and automation RWIA’2014. In: Advances in Intelligent Systems and Computing. New York, NY, USA: Springer; 2015.Tzyh-Jong Tarn, Shan-Ben Chen, Xiao-Qi Chen (2015) Robotic Welding, Intelligence and Automation RWIA’2014. Advances in Intelligent Systems and Computing (AISC, volume 363).

Imam M, Racherla V, Biswas K, Fujii H, Chintapenta V, Sun Y et al. Microstructure-property relation and evolutionin friction stir welding of naturally aged 6063 aluminium alloy. Int J Adv Manuf Technol. 2017; 91 (5–8):1753–1769. doi: 10.1007/s00170-016-9865-9.Imam M, Racherla V, Biswas K, Fujii H, Chintapenta V, Sun Y,Morisada Y (2017) Microstructure-property relation and evolutionin friction stir welding of naturally aged 6063 aluminium alloy. Int J Adv Manuf Technol 91:1753–1769.

Liu F, Fu L, Chen H. High speed friction stir welding of ultrathin AA6061-T6 sheets using different backing plates. J Manuf Process. 2018; 33: 219–227. doi: 10.1016/j.jmapro.2018.05.020.Liu F, Fu L, Chen H (2018) High speed friction stir welding of ultrathin AA6061-T6 sheets using different backing plates. J Manuf Process 33:219–227.

Adetunla A, Akinlab E. Finite element analysis of the heat generated during FSP of 1100 al alloy. In: Advances in Manufacturing Engineering. New York, NY, USA: Springer. 2019; pp 425–431.Adedotun Adetunla and Esther Akinlab (2019) Finite Element Analysis of the Heat Generated During FSP of 1100 Al Alloy. Advances in Manufacturing Engineering: 425.

Alaswad A, Benyounis KY, Olabi AG. Optimization techniques in material processing. Reference module in materials science and materials engineering. In: Reference Module in Materials Science and Materials Engineering. Amsterdam, Netherlands: Elsevier; 2016. doi: 10.1016/b978-0-12-803581-8.04004-2.Alaswad, A., Benyounis, K. Y., & Olabi, A. G. (2016). Optimization Techniques in Material Processing. Reference Module in Materials Science and Materials Engineering. doi:10.1016/b978-0-12-803581-8.04004-2.

Rao KV. Evaluation of welding characteristics using three-dimensional finite element simulation and experimentation for FSW of aluminum 6061. J Braz Soc Mech Sci Eng. 2018; 40 (2). doi: 10.1007/s40430-018-0963-5.Rao, K. V. (2018). Evaluation of welding characteristics using three-dimensional finite element simulation and experimentation for FSW of aluminum 6061. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(2).

Khalafe WH, Sheng EL, Bin Isa MR, Omran AB, Shamsudin SB. The effect of friction stir welding parameters on the weldability of aluminum alloys with similar and dissimilar metals: review. Metals. 2022; 12 (12): 2099. doi: 10.3390/met12122099.Khalafe, W.H.; Sheng, E.L.; Bin Isa, M.R.; Omran, A.B.; Shamsudin, S.B. The Effect of Friction Stir Welding Parameters on the Weldability of Aluminum Alloys with Similar and Dissimilar Metals: Review. Metals 2022, 12, 2099.

Firouzdor V, Kou S. Al-to-Mg friction stir welding: effect of material position, travel speed, and rotation speed. Metall Mater Trans A. 2010; 41 (11): 2914–2935. doi: 10.1007/s11661-010-0340-1. Firouzdor V, Kou S (2010) Al-to-Mg friction stir welding: effect of material position, travel speed, and rotation speed. Metall Mater Trans A 41:2914–2935Hong K, Wang Y, Zhou J, Zhou C, Wang L. Investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys. High Temp Mater Processes. 2021; 40 (1): 45–52. doi: 10.1515/htmp-2021-0011

Ahmadnia M, Seidanloo A, Teimouri R, Rostamiyan Y, Titrashi KG. Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints. Int J Adv Manuf Technol. 2015; 78 (9–12): 2009–2024. doi: 10.1007/s00170-015-6784-0.Ahmadnia M, Seidanloo A, Teimouri R, Rostamiyan Y, Titrashi KG (2015) Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints. Int J Adv Manuf Technol 78:2009–2024

Shi L, Wu CS, Padhy GK, Gao S. Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding. Mater Des. 2016; 104: 102–115. doi: 10.1016/j.matdes.2016.05.

Shi L, Wu CS, Padhy GK, Gao S (2016) Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding. Mater Des 104:102–115

Gerlich A, Su P, Yamamoto M, North TH. Material flow and intermixing during dissimilar friction stir welding. Sci Technol Weld Joint. 2008; 13 (3): 254–264. doi: 10.1179/174329308X283910.Gerlich A, Su P, Yamamoto M, North TH (2008) Material flow and intermixing during dissimilar friction stir welding. Sci Technol Weld Joint 13:254–264

Ji S, Li Z, Zhang L, Zhou Z, Chai P. Effect of lap configuration on magnesium to aluminum friction stir lap welding assisted by external stationary shoulder. Mater Des. 2016; 103: 160–170. doi: 10.1016/j.matdes.2016.04.066.Ji S, Li Z, Zhang L, Zhou Z, Chai P (2016) Effect of lap configuration on magnesium to aluminum friction stir lap welding assisted by external stationary shoulder. Mater Des 103:160–170

Rajesh S, Badheka VJ. Process parameters/material location affecting hooking in friction stir lap welding: dissimilar aluminium alloys. Mater Manuf Process. 2018; 33 (3): 323–332. doi: 10.1080/10426914.2017.1317798.Rajesh S, Badheka VJ (2018) Process parameters/material location affecting hooking in friction stir lap welding: dissimilar aluminium alloys. Mater Manuf Process 33:323–332

Kim YG, Fujii H, Tsumura T, Komazaki T, Nakata K. Three defect types in friction stir welding of aluminum die casting alloy. Mater Sci Eng A. 2006; 415 (1–2): 250–254. doi: 10.1016/j.msea.2005.09.072.Kim YG, Fujii H, Tsumura T, Komazaki T, Nakata K (2006) Three defect types in friction stir welding of aluminum die casting alloy. Mater Sci Eng A 415:250–254

Zhao Y, Huang L, Zhao Z, Yan K. Effect of travel speed on the microstructure of Al-to-Mg FSW joints. Mater Sci Technol. 2016; 32 (10): 1025–1034. doi: 10.1080/02670836.2015.1110281.Zhao Y, Huang L, Zhao Z, Yan K (2016) Effect of travel speed on the microstructure of Al-to-Mg FSW joints. Mater Sci Technol 32: 1025–1034

Zhao X, Meng D, Zhu C. Applying low-frequency vibration for the experimental investigation of clutch hub forming. Manuf Processes Syst. 2018; 11 (6): 928.Xuzhe Zhao, De’an Meng ,Chengcheng Zhu, (2018) Applying Low-Frequency Vibration for the Experimental Investigation of Clutch Hub Forming. Manufacturing Processes and Systems,11(6):928

Wu L aijun Wu, Yang B, Han X, Ma G, Xu B, Liu Y et al. The microstructure and mechanical properties of 5083, 6005A and 7N01 aluminum alloy gas metal arc-welded joints for high-speed train: a comparative study. Metals. 2022: 12 (2): 213. doi: 10.3390/met12020213

Hong K, Wang Y, Zhou J, Zhou C, Wang L. Investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys. High Temp Mater Processes. 2021; 40 (1): 45–52. doi: 10.1515/htmp-2021-0011

Kumar S, Wu CS. A novel technique to join Al and Mg alloys: ultrasonic vibration assisted linear friction stir welding. Mater Today Proc. 2018; 05 (100): 1787–1799.Kumar S, Wu CS (2018) A novel technique to join Al and Mg alloys: ultrasonic vibration assisted linear friction stir welding Mater Today Proc 05,100:1787–1799

Strass B, Wagner G, Conrad C et al. Realization of Al/Mghybrid-joints by ultrasound supported friction stir welding: mechanical properties, microstructure and corrosion behavior. Adv Mater Res. 2014; 966–967.Strass B, Wagner G, Conrad C et al (2014) Realization of Al/Mghybrid-joints by ultrasound supported friction stir welding—mechanical properties, microstructure and corrosion behavior. Adv Mater Res 966–967:521–535

Shi L, Wu CS, Liu XC. Modelling the effects of ultrasonic vibrations in friction stir welding. J Mater Process Technol. 2015; 222: 91–102. doi: 10.1016/j.jmatprotec.2015.03.002.Shi L, Wu CS, Liu XC (2015) Modelling the effects of ultrasonicvibrations in friction stir welding. J Mater Process Technol 222:91– 102

Park K, Kim B, Ni J. Numerical simulation of plunge force during the plunge phase of friction stir welding and ultrasonic assisted FSW. In Proceedings of the 2008 International Mechanical Engineering Congress and Exposition; October 31–November 6, 2008; Boston, MA, USA: ASME. pp. 237–242. doi: 10.1115/IMECE2008-67002.Park K, Kim B, Ni J (2008) Numerical simulation of plunge force during the plunge phase of friction stir welding and ultrasonic assisted FSW. ASME 2008 International Mechanical Engineering Congress and Exposition, pp. 237-242

Kumar S, Ding W, Sun Z, Wu CS. Analysis of the dynamic performance of a complex ultrasonic horn for application in friction stir welding. Int J Adv Manuf Technol. 2018; 97 (1–4): 1269–1284. doi: 10.1007/s00170-018-2003-0.Kumar S, Ding W, Zhen S, Wu CS (2018) Analysis of the dynamic performance of a complex ultrasonic horn for application in friction stir welding. Int J Adv Manuf Technol 97:1269–1284

Zhong YB, Wu CS, Padhy GK. Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding. J Mater Process Technol. 2017; 239: 273–283. doi: 10.1016/j.jmatprotec.2016.08.025.Zhong YB, Wu CS, Padhy GK (2017) Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding. J Mater Process Technol 239:279–283

Ammouri AH, Kridli G, Ayoub G, Hamade RF. Relating grain size to the Zener-Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing. J Mater Process Technol. 2015; 222: 301–306. doi: 10.1016/j.jmatprotec.2015.02.037.Ammouri AH, Kridli G, Ayoub G, Hamade RF (2015) Relating grain size to the Zener-Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing. J Mater Process Technol 222:301–306

Commin L, Dumont M, Masse J-E, Barrallier L. Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Mater. 2009; 57 (2): 326–334. doi: 10.1016/j.actamat.2008.09.011.Commin L, Dumont M, Masse JE, Barrallier L (2009) Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Mater 57:326–334

Albakri AN, Mansoor B, Nassar H, Khraisheh MK. Thermomechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy: a numerical and experimental investigation. J Mater Process Technol. 2013; 213 (2): 279–290. doi: 10.1016/j.jmatprotec.2012.09.015.Albakri AN, Mansoor B, Nassar H, Khraisheh MK (2013) Thermomechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—a numerical and experimental investigation. J Mater Process Technol 213:279–290

Saju TP, Ganesh Narayanan R. Friction stir forming of dissimilar grade aluminum alloys: influence of tool rotational speed on the joint evolution, mechanical performance, and failure modes. Int J Adv Manuf Technol. 2018; 95 (1–4): 1377–1397. doi: 10.1007/s00170-017-1322-x

Zhao J, Jiang F, Jian H, Wen K, Jiang L, Chen X. Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al-Mg-Sc alloy plates. Mater Des. 2010; 31 (1): 306–311. doi: 10.1016/j.matdes.2009.06.012.Zhao, J., Jiang, F., Jian, H., Wen, K., Jiang, L., and Chen, X. (2010). “Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al-Mg-Sc alloy plates.” Mater Des, 31(1), 306–311.

Gopan V, Leo Dev Wins K, Surendran A. Innovative potential of additive friction stir deposition among current laser-based metal additive manufacturing processes: a review. CIRP J Manuf Sci Technol. 2021; 32: 228–248. doi: 10.1016/j.cirpj.2020.12.004.Gopan, V., Leo Dev Wins, K., & Surendran, A. (2021). Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review. CIRP Journal of Manufacturing Science and Technology, 32, 228–248.

Zhang Z, Zhang H‐W. Material behaviors and mechanical features in friction stir welding process. Int J Adv Manuf Technol. 2007; 35 (1): 86–100.Zhao Zhang, Hong‐wei Zhang (2007). Material behaviors and mechanical features in friction stir welding process. The International Journal of Advanced Manufacturing Technology 35(1):86-100.

Cai W, Daehn GS. A state-of-the-art review on solid-state metal joining. J Manuf Sci Eng. 2018; 141 (3).Wayne Cai, Glenn S. Daehn, (2018) A State-of-the-Art Review on Solid-State Metal Joining. Journal of Manufacturing Science and Engineering 141(3).

Peng P, Wang W, Zhang T, Liu Q, Guan X, Qiao K et al. Effects of interlayer metal on microstructures and mechanical properties of friction stir lap welded dissimilar joints of magnesium and aluminum alloys. J Mater Process Technol. 2021; 299: 117362.Peng, P., Wang, W., Zhang, T., Liu, Q., Guan, X., Qiao, K., Wang, K. (2021). Effects of interlayer metal on microstructures and mechanical properties of friction stir lap welded dissimilar joints of magnesium and aluminum alloys. Journal of Materials Processing Technology, 117362.

Li H, Chen C, Yi R, Li Y, Wu J. Ultrasonic welding of fiber-reinforced thermoplastic composites: a review. Int J Adv Manuf Technol. 2022; 120 (1–2): 29–57. doi: 10.1007/s00170-022-08753-9.Haijun Li, Chao Chen, Ruixiang Yi, Yuxiang Li & Jinliang Wu (2022) Ultrasonic welding of fiber-reinforced thermoplastic composites: a review. The International Journal of Advanced Manufacturing Technology volume 120, pages29–57.

Ogunsemi BT, Abioye TE, Ogedengbe TI, Zuhailawati H. A review of various improvement strategies for joint quality of AA 6061-T6 friction stir weldments. J Mater Res Technol. 2021; 11: 1061–1089. doi: 10.1016/j.jmrt.2021.01.070.Ogunsemi, B. T., Abioye, T. E., Ogedengbe, T. I., & Zuhailawati, H. (2021). A review of various improvement strategies for joint quality of AA 6061-T6 friction stir weldments. Journal of Materials Research and Technology, 11, 1061–1089.

Liu HJ, Fujii H, Maeda M, Nogi K. Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. J Mater Process Technol. 2003; 142 (3): 692–696. doi: 10.1016/S0924-0136(03)00806-9.Liu, H. J., Fujii, H., Maeda, M., and Nogi, K. (2017). “Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy.” J Mater Process Technol, 142(2003), 692–696.

Luo C, Li X, Song D, Zhou N, Li Y, Qi W. Microstructure evolution and mechanical properties of friction stir welded dissimilar joints of Mg-Zn-Gd and MgAl-Zn alloys. Mater Sci Eng A. 2016; 664: 103–113. doi: 10.1016/j.msea.2016.03.117.Luo, C., Li, X., Song, D., Zhou, N., Li, Y., Qi, W., 2016. Microstructure evolution and mechanical properties of friction stir welded dissimilar joints of Mg-Zn-Gd and MgAl-Zn alloys. Mater. Sci. Eng. A 664, 103–113.

Jose MJ, Kumar SS, Sharma A. Vibration assisted welding processes and their influence on quality of welds. Sci Technol Weld Joining. 2016; 21 (4): 243–258. doi: 10.1179/1362171815Y.0000000088

Kumar S, Wu CS, Padhy GK. Ultrasonic vibrations in friction stir welding: state of the art. In: 7th International Conference on Welding Science and Engineering (WSE 2017) in conjunction with 3rd International Symposium on Computer-Aided Welding Engineering (CAWE 2017); Jinan, China: Shandong University; 2017. pp. 272-276.Kumar S, Wu CS, Padhy GK (2017) Ultrasonic vibrations in friction stir welding: state of the art. In: 7th International Conference on Welding Science and Engineering (WSE 2017) in conjunction with 3rd International Symposium on Computer-Aided Welding Engineering (CAWE 2017). Shandong University, Jinan, China, pp 272–276

Kumar S, Wu CS, Padhy GK, Ding W. Application of ultrasonic vibrations in welding and metal processing: a status review. J Manuf Process. 2017; 26: 295–322. doi: 10.1016/j.jmapro.2017.02.027.Kumar S, Wu CS, Padhy GK, Ding W (2017) Application of ultra-sonic vibrations in welding and metal processing: a status review. J Manuf Process 26:295–322

Liu XC, Wu CS. Material flow in ultrasonic vibration enhanced friction stir welding. J Mater Process Technol. 2015; 225: 32–44. doi: 10.1016/j.jmatprotec.2015.05.020.Liu XC, Wu CS (2015) Material flow in ultrasonic vibration enhanced friction stir welding. J Mater Process Technol 225:32–44

Shi L, Wu CS, Liu XC. Modeling the effects of ultrasonic vibration on friction stir welding. J Mater Process Technol. 2015; 222: 91–102. doi: 10.1016/j.jmatprotec.2015.03.002.Shi L, Wu CS, Liu XC (2015) Modeling the effects of ultrasonic vibration on friction stir welding. J Mater Process Technol 222:91– 102

Kumar S. Ultrasonic assisted friction stir processing of 6063 aluminum alloy. Arch Civ Mech Eng. 2016; 16 (3): 473–484. doi: 10.1016/j.acme.2016.03.002.Kumar S (2016) Ultrasonic assisted friction stir processing of 6063 aluminum alloy. Arch Civ Mech Eng 16:473–484

Liu XC, Wu CS. Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding. Mater Des. 2016; 90: 350–358. doi: 10.1016/j.matdes.2015.10.131.Liu XC, Wu CS (2016) Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding. Mater Des 90:350–358

Liu XC, Wu CS. Effect of ultrasonic vibration on microstructure and mechanical properties of friction stir welded joint of 6061-T4 aluminum alloy. Translator, (China), (Weld). 2014; 35:

–53.Liu XC, Wu CS (2014) Effect of ultrasonic vibration on microstructure and mechanical properties of friction stir welded joint of 6061- T4 aluminum alloy. Trans China Weld 35:49–53

Meng X, Xu Z, Huang Y, Xie Y, Wang Y, Wan L et al. Interface characteristic and tensile property of friction stir lap welding of dissimilar aircraft 2060-T8 and 2099-T83 Al–Li alloys. Int J Adv Manuf Technol. 2017; 94: 1253–1261.Meng X, Xu Z, Huang Y, et al (2017) Interface characteristic and tensile property of friction stir lap welding of dissimilar aircraft 2060-T8 and 2099-T83 Al–Li alloys. Int J Adv Manuf Technol 1–9

Ji S, Meng X, Liu Z, Huang R, Li Z. Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic. Mater Lett. 2017; 201: 173–176. doi: 10.1016/j.matlet.2017.05.011.Ji S, Meng X, Liu Z, Huang R, Li Z (2017) Dissimilar friction stirwelding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic. Mater Lett 201:173–176

Benfer S, Straß B, Wagner G, Fürbeth W. Manufacturing and corrosion properties of ultrasound supported friction stir welded Al/ Mg-hybrid joints. Surf Interface Anal. 2016; 48 (8): 843–852. doi: 10.1002/sia.5871

Ingram E, Golan O, Haj-Ali R, Eliaz N. The effect of localized vibration during welding on the microstructure and mechanical behavior of steel welds. Materials (Basel). 2019; 12 (16): 2553. doi: 10.3390/ma12162553, PMID 31405190.Ehud Ingram, Oz Golan, Rami Haj-Ali, and Noam Eliaz, (2019) The Effect of Localized Vibration during Welding on the Microstructure and Mechanical Behavior of Steel Welds. Materials (Basel). 2019 Aug; 12(16): 2553.

Shin H-S, Park KT, Lee C, Chang K, Van Do VN. Low temperature impact toughness of structural steel welds with different welding processes. KSCE J Civ Eng. 2015; 19 (5): 1431–1437. doi: 10.1007/s12205-015-0042-8.Hyun-Seop Shin, Ki-Tae Park, Chin-Hyung Lee, Kyong-Ho (2015) Chang Low temperature impact toughness of structural steel welds with different welding processes. KSCE Journal of Civil Engineering 19(5).

Liu F, Liu J, Ji Y, Bai Y. Microstructure, mechanical properties, and corrosion resistance of friction stir welded Mg-Al-Zn alloy thick plate joints. Weld World. 2020;15 (1): 23.Liu, F., Liu, J., Ji, Y., & Bai, Y. (2020). Microstructure, mechanical properties, and corrosion resistance of friction stir welded Mg-Al-Zn alloy thick plate joints. Welding in the World,15(1), 23

Radisavljevic I, Zivkovic A, Radovic N, Grabulov V. Influence of FSW parameters on formation quality and mechanical properties of Al 2024-T351 butt welded joints. Trans Nonferrous Met Soc China. 2013; 23 (12): 3525–3539. doi: 10.1016/S1003-6326(13)62897-6.I. Radisavljevic, A. Zivkovic, N. Radovic, and V. Grabulov, “Influence of FSW parameters on formation quality and mechanical properties of Al 2024-T351 butt welded joints,” Trans. Nonferrous Met. Soc. China, vol. 23, no. 12, pp. 3525–3539, 2013.

Malinowaski M, Den G, Wink WJ. Effect of Magnetic Fields on GTA welds in austenitic stainless steel. Weld Res Suppl. 1990; 52: 52–59.M. Malinowaski, G. Den and W. J. Wink, “Effect of Magnetic Fields on GTA welds in austenitic stainless steel”, Welding Research Supplement, vol. 52, pp. 52-59, 1990.

Starling CMD, Marques PV, Modenesi PJ. Statistical modeling of narrow-gap GTA welding with magnetic arc oscillation. J Mater Process Technol. 1995; 51 (1–4): 37–49. doi: 10.1016/0924-0136(94)01356-6.M. D. Starling, P. V. Marques, and P. J. Modenesi, “Statistical modeling of narrow-gap GTA welding with magnetic arc oscillation,” J. Mater. Process. Tech., vol. 51, pp. 37–49, 1995.

Vivès. Effects of electromagnetic vibrations on the microstructure of continuously cast aluminum alloys. Mater Sci Eng A. 1993; 173 (1–2): 169–172.Vivès, “Effects of electromagnetic vibrations on the microstructure of continuously cast aluminum alloys,” Mater. Sci. Eng. A, vol. 173, no. 1–2, pp. 169–172, 1993.

Dehmolaei R, Shamanian M, Kermanpur A. Effect of electromagnetic vibration on the unmixed zone formation in 25Cr–35Ni heat resistant steel/Alloy 800 dissimilar welds. Mater Charact. 2008; 59 (12): 1814–1817. doi: 10.1016/j.matchar.2008.05.003.Dehmolaei, M. Shamanian, and a. Kermanpur, “Effect of electromagnetic vibration on the unmixed zone formation in 25Cr-35Ni heat resistant steel/Alloy 800 dissimilar welds,” Mater. Charact., vol. 59, pp. 1814–1817, 2008.

Tewari SP, Shanker A. Effects of longitudinal vibration on hardness of the weldments. ISIJ Int. 1993; 33 (12): 1265–1269. doi: 10.2355/isijinternational.33.1265.S. P. Tewari and A. Shanker, “Effects of Longitudinal Vibration on Hardness of the Weldments.,” ISIJ Int., vol. 33, pp. 1265–1269, 1993.

Xu JJ, Chen LG, Ni CZ. Low stress welding technology without post-weld heat treatment. Mater Sci Technol. 2009; 25 (8): 976–980. doi: 10.1179/174328408X369393.J. J. Xu, L. G. Chen and C. Z. Ni: ‘Low stress welding technology without post-weld heat treatment’, Mater. Sci. Technol., 2009, 25, (8), 976–980.

Munsi ASMY, Waddell AJ, Walker CA. Vibratory weld conditioning: the effect of rigid body motion vibration during welding. Strain. 1999; 35 (4): 139–143. doi: 10.1111/j.1475-1305.1999.tb01152.x.S. M. Y. Munsi, A. J. Waddell, and C. A. Walker, “Vibratory weld conditioning - the effect of rigid body motion vibration during welding,” Strain, vol. 35, pp. 139–143, 1999

Patel VV, Badheka VJ, Patel U, Patel S, Patel S, Zala S et al. Experimental investigation on hybrid friction stir processing using compressed air in aluminum 7075 alloy. Mater Today Proc. 2017; 4 (9): 10025–10029. doi: 10.1016/j.matpr.2017.06.314.Patel VV, Badheka VJ, Patel U, Patel S, Patel S, Zala S, Badheka K(2017) Experimental investigation on hybrid friction stir processing using compressed air in aluminum 7075 alloy. Mater Today Proc 4: 10025–10029

Lv X, Wu CS, Yang CL, Padhy GK. Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy. J Mater Process Technol. 2018; 254: 145–157. doi: 10.1016/j.jmatprotec.2017.11.031.Lv X, Wu CS, Yang CL, Padhy GK (2018) Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy. J Mater Process Technol 254: 145–157

Firouzdor V, Kou S. Al-to-Mg friction stir welding: effect of positions of Al and Mg with respect to the welding tool. Weld J. 2009; 88: 213–224.Firouzdor V, Kou S (2009) Al-to-Mg friction stir welding: effect of positions of Al and Mg with respect to the welding tool. Weld J 88: 213–224

Chowdhury SH, Chen DL, Bhole SD, Cao X, Wanjara P. Lap shear strength and fatigue behavior of friction stir spot welded dissimilar magnesium-to-aluminum joints with adhesive. Mater Sci Eng A. 2013; 562: 53–60. doi: 10.1016/j.msea.2012.11.039.Chowdhury SH, Chen DL, Bhole SD, Cao X, Wanjara P (2013) Lap shear strength and fatigue behavior of friction stir spot welded dissimilar magnesium-to-aluminum joints with adhesive. Mater Sci Eng A 562:53–60

Mohammadi J, Behnamian Y, Mostafaei A, Izadi H, Saeid T, Kokabi AH et al. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: microstructure studies and mechanical characterizations. Mater Charact. 2015; 101: 189–207. doi: 10.1016/j.matchar.2015.01.008.Mohammadi J, Behnamian Y, Mostafaei A, Izadi H, Saeid T, Kokabi AH, Gerlich AP (2015) Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: microstructure studies and mechanical characterizations. Mater Charact 101:189–207

Dorbane A, Mansoor B, Ayoub G, Shunmugasamy VC, Imad A. Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061. Mater Sci Eng A. 2016; 651: 720–733. doi: 10.1016/j.msea.2015.11.019.Dorbane A, Mansoor B, Ayoub G, Shunmugasamy VC, Imad A (2016) Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061. Mater Sci Eng A 651:720–733

Verma J, Taiwade RV, Sapate SG, Patil AP, Dhoble AS. Evaluation of microstructure, mechanical properties and corrosion resistance of friction stir-welded aluminum and magnesium dissimilar alloys. J Mater Eng Perform. 2017; 26 (10): 4738–4747. doi: 10.1007/s11665-017-2877-2.Verma J, Taiwade RV, Sapate SG, Patil AP, Dhoble AS (2017) Evaluation of microstructure, mechanical properties and corrosion resistance of friction stir-welded aluminum and magnesium dissimilar alloys. J Mater Eng Perform 26:4738–4747

Sato YS, Park SHC, Michiuchi M, Kokawa H. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scr Mater. 2004; 50 (9): 1233–1236. doi: 10.1016/j.scriptamat.2004.02.002.Sato YS, Park SHC, Michiuchi M, Kokawa H (2004) Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scr Mater 50:1233–1236

Chen YC, Nakata K. Friction stir lap joining aluminum and magnesium alloys. Scr Mater. 2008; 58 (6): 433–436. doi: 10.1016/j.scriptamat.2007.10.033.Chen YC, Nakata K (2008) Friction stir lap joining aluminum and magnesium alloys. Scr Mater 58:433–436

Lv XQ, Wu CS, Padhy GK. Diminishing intermetallic compound layer in ultrasonic vibration enhanced friction stir welding of aluminum alloy to magnesium alloy. Mater Lett. 2017; 203: 81–4. doi: 10.1016/j.matlet.2017.05.090.Lv XQ, Wu CS, Padhy GK (2017) Diminishing intermetallic compound layer in ultrasonic vibration enhanced friction stir welding of aluminum alloy to magnesium alloy. Mater Lett 203:81–84

Yamamoto N, Liao J, Watanabe S, Nakata K. Effect of intermetallic compound layer on tensile strength of dissimilar friction stir weld of a high strength Mg alloy and Al alloy. Mater Trans. 2009; 50 (12): 2833–2838. doi: 10.2320/matertrans.M2009289.Yamamoto N, Liao J, Watanabe S, Nakata K (2009) Effect of intermetallic compound layer on tensile strength of dissimilar frictionstir weld of a high strength Mg alloy and Al alloy. Mater Trans 50: 2833–2838

Mohammadi J, Behnamian Y, Mostafaei A, Gerlich AP. Tool geometry, rotation and travel speeds effects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints. Mater Des. 2015; 75: 95–112. doi: 10.1016/j.matdes.2015.03.017.Mohammadi J, Behnamian Y, Mostafaei A, Gerlich AP (2015) Tool geometry, rotation and travel speeds effects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints. Mater Des 75:95–112

Rao HM, Yuan W, Badarinarayan H. Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys. Mater Des. 2015; 66: 235–245. doi: 10.1016/j.matdes.2014.10.065.Rao HM, Yuan W, Badarinarayan H (2015) Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys. Mater Des 66:235–245

Tan S, Zheng F, Chen J, Han J, Wu Y, Peng L. Effects of process parameters on microstructure and mechanical properties of friction stir lap linear welded 6061 aluminum alloy to NZ30K magnesium alloy. J Magnes Alloys. 2017; 5 (1): 56–63. doi: 10.1016/j.jma.2016.11.005.Tan S, Zheng F, Chen J, Han J, Wu Y, Peng L (2017) Effects of process parameters on microstructure and mechanical properties of friction stir lap linear welded 6061 aluminum alloy to NZ30K magnesium alloy. J Magnes Alloy 5:56–63

Firouzdor V, Kou S. Formation of liquid and intermetallics in Al-to-Mg friction stir welding. Metall Mater Trans A. 2010; 41 (12): 3238–3251. doi: 10.1007/s11661-010-0366-4.Firouzdor V, Kou S (2010) Formation of liquid and intermetallics in Al-to-Mg friction stir welding. Metall Mater Trans A 41:3238– 3251

Liu Z, Ji S, Meng X. Improving joint formation and tensile properties of dissimilar friction stir welding of aluminum and magnesium alloys by solving the pin adhesion problem. J Mater Eng Perform. 2018; 27 (3): 1404–1413. doi: 10.1007/s11665-018-3216-y.Liu Z, Ji S, Meng X (2018) Improving joint formation and tensile properties of dissimilar friction stir welding of aluminum and magnesium alloys by solving the pin adhesion problem. J Mater Eng Perform 27:1404–141

Shah LH, Gerlich A, Zhou Y. Design guideline for intermetallic compound mitigation in Al-Mg dissimilar welding through addition of interlayer. Int J Adv Manuf Technol. 2017: 94: 2667–2678.Shah LH, Gerlich A, Zhou Y (2017) Design guideline for intermetallic compound mitigation in Al-Mg dissimilar welding through addition of interlayer. Int J Adv Manuf Technol 1–12

Macwan A, Kumar A, Chen DL. Ultrasonic spot welded 6111-T4 aluminum alloy to galvanized high-strength low-alloy steel: microstructure and mechanical properties. Mater Des. 2017; 113: 284–296. doi: 10.1016/j.matdes.2016.10.025.Macwan A, Kumar A, Chen DL (2017) Ultrasonic spot welded 6111-T4 aluminum alloy to galvanized high-strength low-alloy steel: microstructure and mechanical properties. Mater Des 113: 284–296

Peng H, Jiang XQ, Bai XF, Li D, Chen D. Microstructure and mechanical properties of ultrasonic spot-welded Mg/Al alloy dissimilar joints. Metals. 2018; 8 (4): 229. doi: 10.3390/met8040229.

Singh PK, Kumar SD, Patel D, Prasad SB. Optimization of vibratory welding process parameters using response surface methodology. J Mech Sci Technol. 2017; 31 (5): 2487–2495. doi: 10.1007/s12206-017-0446-0




DOI: https://doi.org/10.37591/joeam.v13i3.6952

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Experimental & Applied Mechanics