Open Access Open Access  Restricted Access Subscription or Fee Access

Study Analysis of Nano Particle based Fiber Reinforced Plastics (FRP) Composites

Fahad Usaman, Sarah Farrukh, Sarim Ali, Arshad Hussain


Utilization of Fiber reinforced plastics (FRP) composites for development of new and modification of already present structures has increased largely in the past few decades. Fiber Reinforced Polymer composites have many qualities like corrosion resistant, longer life time, less weight, specific stiffness and high strength, are effortlessly built, and can be custom-made to fulfill execution prerequisites [1]. Fiber Reinforced Polymer composites are ordinarily manufactured utilizing a polymer framework, for example, vinyl ester, polyester or epoxy, and protected with different evaluations of glass, potentially aramid fibers or carbon, for auxiliary applications. Because of its favorable attributes, Fiber Reinforced Polymer composites have been incorporated into new development and modification of structures through its utilization as protection in bridging decks, seismic updates, outside support and concrete. The aim of this review is to provide a brief overview to enhance the mechanical strength of FRP composites by addition of Nano particles. Various Nano particles can be utilized in this regard like nanoparticles of Titania. Nanoparticles of Aluminum Oxide, nanoparticles of Zinc Oxide, nanoparticles of Silica and many others.


Fiber reinforced plastics; nano particles; sheets & coatings; mechanical strength;

Full Text:



Gerdeen, J.C., Lord H.W., and Rorrer R.A.L., Engineering design with polymers and composites, CRC Press, Boca Raton, USA, 2006.

Imanaka M., Nakamura Y., Nishimura A., and Iida T., “Fracture toughness of rubber-modified epoxy adhesives: Effect of plastic deformability of the matrix phase”, Composites Science and Technology, vol. 63, no.1, 2003, pp. 41

Chikhi N., Fellahi S., and Bakar M., European Polymer Journal, vol. 38, vol. 2, 2002, pp. 251

Xian G.J., Walter R., and Haupert F., Composites Science Technology, vol.66, no. 16, 2006, pp. 3199

Vasconcelos P.V., Lino F.J., Magalhaes A., and Neto R.J.L., Journal of Materials Processing

Technology, vol. 170, no. 1-2, 2005, pp. 277

Zhou Y., Pervin F., Biswas M.A., Rangari V., and Jeelani S., Materials Letters, vol. 60, no. 7, pp. 869

Conradi M., Materials Technology, vol. 47, 2013, pp. 285

Weir A., Westerhoff P., Fabricius L., Hristovski K., and von Goetz N., Environmental Science amd

Technology, vol.46, 2012, pp. 2242

Morison W.L.. The New England Journal of Medicine, vol. 350, 2004, pp. 1111.

Magda G., El-Meligy Z., Nagieb A., and Isis K.B., 2012, pp. 263975

Ma J., Zhu W., Tian Y., and Wang Z., 2016, PMC4830787

Cioffi N., and Rai M., Nano-antimicrobials: Progress an Prospects, Springer, Berlin Heidelberg, Germany, 2012.

Wang Z.L., “Zinc oxide nanostructures: growth, properties and applications”, Journal of

Physics: Condensed Matter, vol. 16, no. 25, 2004, pp. 829–858.

Stoimenov P.K., Klinger R.L., Marchin G.L., and Klabunde K.J.. “Metal oxide nanoparticles

as bactericidal agents”, Langmuir, vol. 18, no. 17, 2002, pp. 6679–6686.

Kolodziejczak-Radzimska A., and Jesionowski T., “Zinc oxide-from synthesis to

application: a review”, Materials, vol. 7, no. 4, 2013, pp. 2833–2881.

Moncada E., Quijada R., and Retuert J., “Nanoparticles prepared by the sol-gelmethod and their use in the formation of nanocomposites with polypropylene”,

Nanotechnology, vol. 18, no. 33, 2007, pp. 335606

Avella M., Bondioli F., Cannillo V., Errico M.E., Ferrari A.M., Focher B., Malinconico M., Manfredini T., and Montorsi M., “Preparation, characterisation and computational study of poly(epsiloncaprolactone) based nanocomposites”, Materials Science and Technology, vol. 20, 2004, pp. 1340–1344

Yang F., and Nelson G.L., “Polymer/silica nanocomposites prepared via extrusion”, Polymer for Advamced Technologies, vol. 17, 2006, pp. 320–326

Tanahashi M., Hirose M., Watanabe Y., Lee J.C., and Takeda K., “Silica/perfluoropolymer nanocomposites fabricated by direct melt-compounding: A novel method without surface modification on nanosilica”, Journal of Nano-science and Nano-technology, vol.7, 2007, pp. 2433–2442

Hussain M., Oku Y., Nakahira A., and Niihara K., “Effects of wet ballmilling on particle dispersion and mechanical properties of particulate epoxy composites”, Materials Letters, vol. 26, 1996, pp. 177–184

Manjunatha C.M., Taylor A.C., Kinloch A.J., and Sprenger S., Composites Science and Technology, vol. 70, 2010, pp. 193

Boger L., Sumfleth J., Hedemann H., and Schulte K., Composites part A: Applied Science and Manufacturing, vol. 41, 2010, pp. 1419

Kornmann X., Rees M., Thomann Y., Necola A., Barbezat M., and Thomann R., Composites Science and Technology, vol. 65, 2005, pp. 2259.

Fu S.Y., Feng X.Q., Lauke B., and Mai Y.W., Composites part B: Engineering, vol. 39, 2008, pp. 933

Lingaraju D., Ramji K., Devi M.P., and Lakshmi U.R., Buletin of Materials Science, vol. 34, 2011, pp. 705

Deng S., Ye L., and Friedrich K.J., Journal of Materials Science, vol. 42, 2007, pp. 2766.

Zhang H., Zhang Z., Friedrich K., and Eger C., Acta Materialia, vol.54, 2006, pp. 1833 .

Jumahat A., Soutis C., Jones F.R., and Hodzic A., Composite Structures, vol. 92, 2010, pp. 295

Jumahat A., Soutis C., Jones F.R., and Hodzic A., Journal of Materials Science, vol. 45, 2010, pp. 5973


  • There are currently no refbacks.