

Study Analysis of Nano Particle based Fiber Reinforced Plastics (FRP) Composites
Abstract
Utilization of Fiber reinforced plastics (FRP) composites for development of new and modification of already present structures has increased largely in the past few decades. Fiber Reinforced Polymer composites have many qualities like corrosion resistant, longer life time, less weight, specific stiffness and high strength, are effortlessly built, and can be custom-made to fulfill execution prerequisites [1]. Fiber Reinforced Polymer composites are ordinarily manufactured utilizing a polymer framework, for example, vinyl ester, polyester or epoxy, and protected with different evaluations of glass, potentially aramid fibers or carbon, for auxiliary applications. Because of its favorable attributes, Fiber Reinforced Polymer composites have been incorporated into new development and modification of structures through its utilization as protection in bridging decks, seismic updates, outside support and concrete. The aim of this review is to provide a brief overview to enhance the mechanical strength of FRP composites by addition of Nano particles. Various Nano particles can be utilized in this regard like nanoparticles of Titania. Nanoparticles of Aluminum Oxide, nanoparticles of Zinc Oxide, nanoparticles of Silica and many others.
Keywords
References
Gerdeen, J.C., Lord H.W., and Rorrer R.A.L., Engineering design with polymers and composites, CRC Press, Boca Raton, USA, 2006.
Imanaka M., Nakamura Y., Nishimura A., and Iida T., “Fracture toughness of rubber-modified epoxy adhesives: Effect of plastic deformability of the matrix phase”, Composites Science and Technology, vol. 63, no.1, 2003, pp. 41
Chikhi N., Fellahi S., and Bakar M., European Polymer Journal, vol. 38, vol. 2, 2002, pp. 251
Xian G.J., Walter R., and Haupert F., Composites Science Technology, vol.66, no. 16, 2006, pp. 3199
Vasconcelos P.V., Lino F.J., Magalhaes A., and Neto R.J.L., Journal of Materials Processing
Technology, vol. 170, no. 1-2, 2005, pp. 277
Zhou Y., Pervin F., Biswas M.A., Rangari V., and Jeelani S., Materials Letters, vol. 60, no. 7, pp. 869
Conradi M., Materials Technology, vol. 47, 2013, pp. 285
Weir A., Westerhoff P., Fabricius L., Hristovski K., and von Goetz N., Environmental Science amd
Technology, vol.46, 2012, pp. 2242
Morison W.L.. The New England Journal of Medicine, vol. 350, 2004, pp. 1111.
Magda G., El-Meligy Z., Nagieb A., and Isis K.B., 2012, pp. 263975
Ma J., Zhu W., Tian Y., and Wang Z., 2016, PMC4830787
Cioffi N., and Rai M., Nano-antimicrobials: Progress an Prospects, Springer, Berlin Heidelberg, Germany, 2012.
Wang Z.L., “Zinc oxide nanostructures: growth, properties and applications”, Journal of
Physics: Condensed Matter, vol. 16, no. 25, 2004, pp. 829–858.
Stoimenov P.K., Klinger R.L., Marchin G.L., and Klabunde K.J.. “Metal oxide nanoparticles
as bactericidal agents”, Langmuir, vol. 18, no. 17, 2002, pp. 6679–6686.
Kolodziejczak-Radzimska A., and Jesionowski T., “Zinc oxide-from synthesis to
application: a review”, Materials, vol. 7, no. 4, 2013, pp. 2833–2881.
Moncada E., Quijada R., and Retuert J., “Nanoparticles prepared by the sol-gelmethod and their use in the formation of nanocomposites with polypropylene”,
Nanotechnology, vol. 18, no. 33, 2007, pp. 335606
Avella M., Bondioli F., Cannillo V., Errico M.E., Ferrari A.M., Focher B., Malinconico M., Manfredini T., and Montorsi M., “Preparation, characterisation and computational study of poly(epsiloncaprolactone) based nanocomposites”, Materials Science and Technology, vol. 20, 2004, pp. 1340–1344
Yang F., and Nelson G.L., “Polymer/silica nanocomposites prepared via extrusion”, Polymer for Advamced Technologies, vol. 17, 2006, pp. 320–326
Tanahashi M., Hirose M., Watanabe Y., Lee J.C., and Takeda K., “Silica/perfluoropolymer nanocomposites fabricated by direct melt-compounding: A novel method without surface modification on nanosilica”, Journal of Nano-science and Nano-technology, vol.7, 2007, pp. 2433–2442
Hussain M., Oku Y., Nakahira A., and Niihara K., “Effects of wet ballmilling on particle dispersion and mechanical properties of particulate epoxy composites”, Materials Letters, vol. 26, 1996, pp. 177–184
Manjunatha C.M., Taylor A.C., Kinloch A.J., and Sprenger S., Composites Science and Technology, vol. 70, 2010, pp. 193
Boger L., Sumfleth J., Hedemann H., and Schulte K., Composites part A: Applied Science and Manufacturing, vol. 41, 2010, pp. 1419
Kornmann X., Rees M., Thomann Y., Necola A., Barbezat M., and Thomann R., Composites Science and Technology, vol. 65, 2005, pp. 2259.
Fu S.Y., Feng X.Q., Lauke B., and Mai Y.W., Composites part B: Engineering, vol. 39, 2008, pp. 933
Lingaraju D., Ramji K., Devi M.P., and Lakshmi U.R., Buletin of Materials Science, vol. 34, 2011, pp. 705
Deng S., Ye L., and Friedrich K.J., Journal of Materials Science, vol. 42, 2007, pp. 2766.
Zhang H., Zhang Z., Friedrich K., and Eger C., Acta Materialia, vol.54, 2006, pp. 1833 .
Jumahat A., Soutis C., Jones F.R., and Hodzic A., Composite Structures, vol. 92, 2010, pp. 295
Jumahat A., Soutis C., Jones F.R., and Hodzic A., Journal of Materials Science, vol. 45, 2010, pp. 5973
Refbacks
- There are currently no refbacks.