Open Access Open Access  Restricted Access Subscription or Fee Access

Tribological Behaviour of En 31 Bearing Steel Against Altin, Alcrn and Crn Coated High Speed Steel

Mahesh Bhandare, Kirankumar Jagtap


Mechanical parts like bearing in modern machining systems are often subjected to wear and friction causing high heat generation at the interacting zones leading to reduced lifecycle and increased energy consumption of machinery. In this investigation friction and wear characteristics of bearing material EN31 steel against the CrN, AlCrN and AlTiN deposited on high speed steel as counter material is presented. Tribological tests are conducted on a pin on disc tribometer for different combinations of loads, speeds and sliding distances as per L9(34) orthogonal array in dry environment. From the results it is found that tribological characteristics are mainly influenced by Load and speed. Also it is noted that wear rate of contact zone of EN31 with counter material goes on increasing as counter material hardness decreases. Minimum wear for EN31 is found with AlCrN coating. Coefficient of Friction for EN31 steel has been found more for bare HSS then it goes on decreasing as counter material hardness increases. Highest values of tribological characteristics are noted for EN31 steel against uncoated HSS counter material. Machining of composite materials is difficult to carry out due to the reinforcement of highly abrasive constituents in polymer matrix and also because of non-homogeneous and anisotropic structural arrangement of composites. Through this research authors suggested the low cost solution of surface coating on composite machining tools for enhancing the tool life.


Wear rate, Coatings, Cutting Tools, Bearing Steel, Fretting wear

Full Text:



W. Haws, “ASM Handbook Editorial Assistance,” no. 423882, 2017.

R. Ramesh, R. Gnanamoorthy. Fretting wear behavior of liquid nitrided structural steel, En24 and bearing steel, En31. J. Mater. Process. Technol. 2006;171(1): 61-67. doi: 10.1016/j.jmatprotec.2005.06.048.

M. Shima, J. Okado, I. R. McColl, R. B. The influence of substrate material and hardness on the fretting behaviour of TiN. Wear. 1999; 225–229(1): 38–45. doi: 10.1016/S0043-1648(99)00062-9.

G. Z. Xu, Z. R. Zhou, J. J. Liu. A comparative study on fretting wear-resistant properties of ion-plated TiN and magnetron-sputtered MoS2 coatings. Wear. 1999; 224(2): 211-215. doi: 10.1016/S0043-1648(98)00341-X.

E. L. Dalibon, J. N. Pecina, A. Cabo, Fretting wear resistance of DLC hard coatings deposited on nitrided martensitic stainless steel. J. Mater. Res. Technol. 2019; 8(1): 259-266. doi: 10.1016/j.jmrt.2017.12.004.

J. Luo, M. H. Zhu, Y. D. Wang, Study on rotational fretting wear of bonded MoS2 solid lubricant coating prepared on medium carbon steel. Tribol. Int. 2011; 44(11): 1565–1570. doi: 10.1016/j.triboint.2010.10.011.

T.-H. Kim, J.-H. Sung, S.-S. Kim. SCIENCE IN CHINA (Series A) Fretting damage behavior and mechanism of tin coated zir- caloy-4 tube. 2001; 44. doi: 10.1360/ya2001-44-S1-314.

M. C. Gaspar, A. Ramalho. Fretting behaviour of galvanised steel. Wear. 2002; 252(3–4): 199–209. doi: 10.1016/S0043-1648(01)00874-2.

R. Ramesh, R. Gnanamoorthy. Development of a fretting wear test rig and preliminary studies for understanding the fretting wear properties of steels. Mater. Des. 2006; 27(2): 141–146. doi: 10.1016/j.matdes.2004.09.017.

R. Ramesh, R. Gnanamoorthy. Effect of hardness on fretting wear behaviour of structural steel, En 24, against bearing steel, En 31. Mater. Des. 2007; 28(5): 1447–1452. doi: 10.1016/j.matdes.2006.03.020.

P. Kumar, H. Hirani, A. Agrawal. Scuffing behaviour of EN31 steel under dry sliding condition using pin-on-disc machine. Mater. Today Proc. 2015; 2(4–5): 3446–3452. doi: 10.1016/j.matpr.2015.07.320.

S. Motru, N. Hussain, Z. Ali Khan, Tribological studies of high surface finish ceramic coatings for low friction and adhesive wear resistant applications. Mater. Today Proc.2019; 27: 2208–2212. doi: 10.1016/j.matpr.2019.09.098.

Y. H. Qiang, G. S.r, X. Q.j. Sliding wear behavior of nitrocarburized bearing steel. Mater. Sci. Eng. A.2000; 278(1–2): 261–266. doi: 10.1016/S0921-5093(99)00584-5.

S. Chary Nalband, K. Pamidimukkala, R. K. Gunda, Effect of minimum quantity solid lubrication (MQSL) parameters on cutting force and temperature during turning of EN31 steel. Mater. Today Proc. 2020; 38(5): 3314-3319. doi: 10.1016/j.matpr.2020.10.119.

G. R. Kumar, N. Suresh Kumar Reddy. Tribological studies of EN31 steel and Ti-6Al-4V alloy materials using pin-on-disc tribometer. Mater. Today Proc. 2019; 28: 1216–1220. doi: 10.1016/j.matpr.2020.01.509.

A. Vrček, T. Hultqvist, T. Johannesson, Micro-pitting and wear characterization for different rolling bearing steels: Effect of hardness and heat treatments. Wear. 2020; 458–459: 203404. doi: 10.1016/j.wear.2020.203404.

P. Hedenqvist, M. Olsson, P. Wallén, How TiN coatings improve the performance of high speed steel cutting tools. Surf. Coatings Technol. 1990; 41(2): 243–256. doi: 10.1016/0257-8972(90)90172-9.

W. Wu et al. Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools. Appl. Surf. Sci. 2015; 351: 803–810. doi: 10.1016/j.apsusc.2015.05.191.

M. Piska, P. Sliwkova. Surface parameters, tribological tests and cutting performance of coated HSS Taps. Procedia Eng. 2015; 100: 125–134. doi: 10.1016/j.proeng.2015.01.350.

S. V. Fedorov, S. V. Aleshin, M. H. Swe, Comprehensive surface treatment of high-speed steel tool. Mech. Ind. 2017; 18(7). doi: 10.1051/meca/2017066.

J. L. Mo, M. H. Zhu. Tribological oxidation behaviour of PVD hard coatings. Tribol. Int. 2009; 42(11–12): 1758–1764. doi: 10.1016/j.triboint.2009.04.026.

K. M. Gupta, K. Ramdev, S. Dharmateja, Cutting Characteristics of PVD Coated Cutting Tools. Mater. Today Proc. 2018; 5(5): 11260–11267. doi: 10.1016/j.matpr.2018.02.092.

J. Zhao, Z. Liu, B. Wang, Tool coating effects on cutting temperature during metal cutting processes: Comprehensive review and future research directions. Mech. Syst. Signal Process. 2021; 150: 107302. doi: 10.1016/j.ymssp.2020.107302.

J. Gerth, M. Larsson, U. Wiklund, On the wear of PVD-coated HSS hobs in dry gear cutting. Wear. 2009; 266(3–4): 444–452. doi: 10.1016/j.wear.2008.04.014.

E. Gariboldi. Drilling a magnesium alloy using PVD coated twist drills. J. Mater. Process. Technol. 2003; 134(3): 287–295. doi: 10.1016/S0924-0136(02)01111-1.

V. Firouzdor, E. Nejati, F. Khomamizadeh. Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill. J. Mater. Process. Technol. 2008; 206(1–3): 467–472. doi: 10.1016/j.jmatprotec.2007.12.072.

C. S. Kumar, S. K. Patel. Application of surface modification techniques during hard turning: Present work and future prospects. Int. J. Refract. Met. Hard Mater. 2018; 76: 112–127. doi: 10.1016/j.ijrmhm.2018.06.003.

Y. M. Durmaz, F. Yildiz. The wear performance of carbide tools coated with TiAlSiN, AlCrN and TiAlN ceramic films in intelligent machining process. Ceram. Int. 2019; 45(3): 3839–3848. doi: 10.1016/j.ceramint.2018.11.055.

W. Y. H. Liew, J. L. L. Jie, L. Y. Yan, Frictional and wear behaviour of AlCrN, TiN, TiAlN single-layer coatings, and TiAlN/AlCrN, AlN/TiN nano-multilayer coatings in dry sliding. Procedia Eng. 2013; 68: 512–517. doi: 10.1016/j.proeng.2013.12.214.

C. S. Kumar, S. K. Patel. Investigations on the effect of thickness and structure of AlCr and AlTi based nitride coatings during hard machining process. J. Manuf. Process. 2018; 31: 336–347. doi: 10.1016/j.jmapro.2017.11.031.

W. Y. H. Liew. Low-speed milling of stainless steel with TiAlN single-layer and TiAlN/AlCrN nano-multilayer coated carbide tools under different lubrication conditions. Wear. 2010; 269(7–8): 617–631. doi: 10.1016/j.wear.2010.06.012.

A. Liu, J. Deng, H. Cui, Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. Int. J. Refract. Met. Hard Mater. 2012; 31: 82–88. doi: 10.1016/j.ijrmhm.2011.09.010.

I. S. Cho, A. Amanov, J. D. Kim. The effects of AlCrN coating, surface modification and their combination on the tribological properties of high speed steel under dry conditions. Tribol. Int. 2015; 81: 61–72. doi: 10.1016/j.triboint.2014.08.003.

A. Caggiano. Machining of fibre reinforced plastic composite materials. Materials (Basel). 2018; 11(3). doi: 10.3390/ma11030442.

R. Teti. Machining of composite materials. CIRP Ann. - Manuf. Technol. 2002; 51(2): 611–634. doi: 10.1016/S0007-8506(07)61703-X.

Y. Patel. The machining of polymers[Phd Thesis]. [London]: Imperial College London; 2008.

D. Muhammad Nuruzzaman, M. Asaduzzaman Chowdhury. Effect of Load and Sliding Velocity on Friction Coefficient of Aluminum Sliding Against Different Pin Materials. Am. J. Mater. Sci. 2012; 2(1): 26–31. doi: 10.5923/j.materials.20120201.05.

M. A. Chowdhury, M. K. Khalil, D. M. Nuruzzaman, The effect of sliding speed and normal load on friction and wear property of aluminum. Int. J. Mech. Mech. Eng. 2011; 11(1): 53–57.

H. Aziz Ameen, K. Salman Hassan, E. Mohamed Mhdi Mubarak. Effect of loads, sliding speeds and times on the wear rate for different materials. AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH. 2011; 1: 99–106. doi: 10.5251/ajsir.2011.2.99.106.

A. M. Bayer, B. A. Becherer, T. Vasco. Bulletin: High Speed Tool Steels. Latrobe Spec. Steel Co. 1989; 16: 10–11.

J. L. Mo, M. H. Zhu. Sliding tribological behavior of AlCrN coating. Tribol. Int. 2008; 41(12): 1161–1168. doi: 10.1016/j.triboint.2008.02.007.

T. Kivak, G. Samtaş, A. Çiçek. Taguchi method based optimisation of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills. Meas. J. Int. Meas. Confed. 2012; 45(6): 1547–1557. doi: 10.1016/j.measurement.2012.02.022.

J. L. Mo, M. H. Zhu. Sliding tribological behaviors of PVD CrN and AlCrN coatings against Si3N4 ceramic and pure titanium. Wear. 2009; 267(5–8): 874–881. doi: 10.1016/j.wear.2008.12.047.

J. L. Mo, M. H. Zhu, B. Lei, Comparison of tribological behaviours of AlCrN and TiAlN coatings-Deposited by physical vapor deposition. Wear. 2007; 263(7-12): 1423–1429. doi: 10.1016/j.wear.2007.01.051.

Y. Birol. Sliding wear of CrN, AlCrN and AlTiN coated AISI H13 hot work tool steels in aluminium extrusion. Tribol. Int. 2013; 57:101–106. doi: 10.1016/j.triboint.2012.07.023.


  • There are currently no refbacks.