Open Access Open Access  Restricted Access Subscription or Fee Access

Production of Alum from Aluminium Drink Cans Waste for Water Treatment

Alyaa Abdul Hasan Abdul Karem, Zainab J. Sweah, Fatima H. Malik

Abstract


The graphite furnaces atomic absorption spectrophotometry (GFAAS) technique has been previously used to quantify the aluminium (Al) content in soft drinks made from aluminium cans over the course of a 12-month storage period. The current research aimed to determine the efficacy of alum obtained from waste soft drink cans compared to the alum obtained from local markets in treating water from Shatt al-Arab, Basrah, Khorramshahr, and Abadan, Iraq. The Shatt al-Arab Treatment Plant in Basra governorate is the subject of the investigation. A raw water sample was taken from the water treatment facility at the Basra governorate (Shatt al-Arab water), and household aluminium waste soft drink cans were obtained from scavengers in the Basra neighbourhood. The extraction of alum from domestic aluminium wastes was done in a lab experiment. Required statistical analysis was done, and a comparison was made. The study showed the volume of water was equal (350 mL) in both samples before coagulation but was slightly high in the standard article (320 mL) after coagulation. The water turbidity is the same in both groups before coagulation and greatest in standard after (82 NTU) coagulation. The solids are highly dissolved in the standard group (258 ppm) after coagulation than prepared (170 ppm). The prepared material shows high conductivity (20) than the standard (15.59). The prepared material is highly acidic (1.2 pH), with high calcium (160 mg/L), sulphate (2720 mg/L), potassium (525.6 mg/L), sodium (132.66 mg/L), and low chloride (2130 mg/L), and magnesium (92.34 mg/L) compared to standard material from the market. The study concludes that there are no relevant differences in using the alum that is available in markets for the same purpose and that is prepared.


Full Text:

PDF

References


Šeruga M, Grgić J, Mandić M. Aluminium content of soft drinks from aluminium cans. Z Lebensmittel Untersuch Forsch. 1994; 198 (4): 313–316. doi: 10.1007/bf01193181.

Duggan JM, Dickeson JE, Tynan PF, Houghton A, Flynn JE. Aluminium beverage cans as a dietary source of aluminium. Med J Aust. 1992; 156 (9): 604–605. doi: 10.5694/j.1326-5377.1992.tb121455.x.

Lopez F, Cabrera C, Lorenzo M, Lopez M. Aluminium content of drinking waters, fruit juices and soft drinks: contribution to dietary intake. Sci Total Environ. 2002; 292 (3): 205–213. doi: 10.1016/s0048-9697(01)01122-6.

Veríssimo MIS, Gomes MTSR. Aluminium migration into beverages: are dented cans safe? Sci Total Environ. 2008; 405 (1–3): 385–388. doi: 10.1016/j.scitotenv.2008.05.045.

Matori KA, Wah LC, Hashim M, Ismail I, Zaid MHM. Phase transformations of α-alumina made from waste aluminum via a precipitation technique. Int J Mol Sci. 2012; 13 (12): 16812–16821. doi: 10.3390/ijms131216812.

Rozhkovskaya A, Rajapakse J, Millar GJ. Synthesis of high-quality zeolite LTA from alum sludge generated in drinking water treatment plants. J Environ Chem Eng. 2021; 9 (2): 104751. doi: 10.1016/j.jece.2020.104751.

Breesem KM, Faris FG, Abdel-Magid IM. Reuse of alum sludge in construction materials and concrete works: a general overview. IUKL Res J. 2014; 2 (1): 20–30.

Gulshan F, Kameshima Y, Nakajima A, Okada K. Preparation of alumina-iron oxide compounds by gel evaporation method and its simultaneous uptake properties for Ni2+, NH4+ and H2PO4–. J Hazard Mater. 2009; 169 (1–3): 697–702. doi: 10.1016/j.jhazmat.2009.04.009.

Wang LK, Yang JY. Total waste recycle system for water purification plant using alum as primary coagulant. Resour Recov Conserv. 1975; 1 (1): 67–84. doi: 10.1016/0304-3967(75)90015-3.

David E, Kopac J. Aluminum recovery as a product with high added value using aluminum hazardous waste. J Hazard Mater. 2013; 261: 316–324. doi: 10.1016/j.jhazmat.2013.07.042.

David E, Kopac J Aluminum recovery as a product with high added value using aluminum hazardous waste. J Hazard Mater. 2013; 261: 316–324. doi: 10.1016/j.jhazmat.2013.07.042.

Mahinroosta M, Allahverdi A. Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: kinetic study. J Environ Manage. 2018; 212: 278–291. doi: 10.1016/j.jenvman.2018.02.009.

Saravanakumar R, Ramachandran K, Laly LG, Ananthapadmanabhan PV, Yugeswaran S. Plasma assisted synthesis of γ-alumina from waste aluminium dross. Waste Manage. 2018; 77: 565–575. doi: 10.1016/j.wasman.2018.05.005.

Aluminum recycling. Recycling aluminum industries in Nigeria. [Online] 2013. Available at http://www.environmental-expert.com/companies/keyword-aluminum-recyling-3115/locationnigeria [Accessed on December 25, 2013].

Chris OO. Environmental sustainability and waste management. J Chem Soc Nigeria. 2010; 44–49.

David C. Aluminum can recycling. [Online] 2004. Available at http://www.cancentral.com/funFac ts.cfm [Accessed on December 25, 2023].

Lambert, JL, Lambert MW. The alums: interchangeable elements in a versatile crystal structure. J Chem Educ. 1970; 47: 465.

Rayner H. The early history of alum. [Online]. 1974. Available at http://www.wovepaper.co.uk/ alumessay1.html.

St. Peter J. The light metals: aluminum and magnesium. J Chem Educ. 1942; 19: 556.

Ugwekar RP, Lakhawat GP. Potash alum from waste and medicinal foil. IOSR J Eng. 2012; 2 (7): 62–64.

Dara SS. A Textbook of Environmental Chemistry and Pollution Control. New Delhi, India: S.Chand Publication; 2000. pp. 97–164.

Sharma A, Sharma C, Sharma AK. Characteristics and management of medical solid waste. Indian J Environ Protect. 2007; 27 (10): 897–904.

Bailie RC. Solid waste collection, transportation and processing. In: Liptak BG, editor. Environmental Engineers’ Handbook, Volume III. Radnor PA: Chilton Book Company; 1974.

Perry RH. Perry's Chemical Engineering Handbook. 7th edition. New York, NY: McGraw Hill Book Company; 2001.

Central Pollution Control Board. Status of Solid Waste Generation, Collection and Disposal in Metro Cities. Central Urban Pollution Series: CUPS/46/1999/2000. New Delhi, India: Central Pollution Control Board; 2000.

Lide DR. CRC Handbook of Chemistry and Physics. 88th edition. Boca Raton, FL: CRC Press; 2008.

Maiti. Handbook of Methods in Environmental Studies Volume 1. Water and Wastewater Analysis. Jaipur, India: ABD Publishers; 2001.

Kamberovic Z, Romhanji E, Filipovic M, Korac M. The recycling of high magnesium aluminum alloys estimation of the most reliable procedure. Metalurgija. 2009; 15 (3): 189–200.

Elias AJ. A Collection of Interesting General Chemistry Experiments. Hyderabad, India: Universities Press India; 2002.

Sultz CH. A Treatise on Beverages or the Complete Practical Bottler. New York, NY: Dick & Fitzgerald Publishers; 1888.

Gorgas FJS. Dental Medicine. A Manual of Dental Materia Medica and Therapeutics. Philadelphia, PA: P. Blakiston's Son & Co; 1901.

Holden A, Morrison P. Crystal and Crystal Growing. Cambridge, MA: MIT Press; 1982.

Matori KA, Wah LC, Hashim M, Ismail I, Zaid MHM. Phase transformations of α-alumina made from waste aluminum via a precipitation technique. Int J Mol Sci. 2012; 13 (12): 16812–16821. doi: 10.3390/ijms131216812.

Rosseland BO, Eldhuset TD, Staurnes M. Environmental effects of aluminium. Environ Geochem Health. 1990; 12 (1–2): 17–27. doi: 10.1007/BF01734045.

Kremser K, Gerl P, Pellis A, Guebitz GM. A new bioleaching strategy for the selective recovery of aluminum from multi-layer beverage cans. Waste Manage. 2021; 120: 16–24. doi: 10.1016/j.wasman.2020.11.012.

Abercrombie DE, Fowler RC. Possible aluminum content of canned drinks. Toxicol Indus Health. 1997; 13 (5): 649–654. doi: 10.1177/074823379701300506.

Paul-Ehrlich-Institut. Sicherheitsbewertung von Aluminium in Therapieallergenen. [Online]. Available at http://www.pei.de/DE/arzneimittelsicherheit-vigilanz/archiv-sicherheitsinformationen [Accessed on July 21, 2017].

Deutsche Dermatologische Gesellschaft. Definition und Therapie der primären Hyperhidrose. [Online] S1-Leitlinie vom 15.1.2012. AWMF-Register Nr. 013/059. Available at http://www.awmf.org/leitlinien [Accessed on July 21, 2017].

European Food Safety Authority. Safety of aluminium from dietary intake, scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials (AFC). EFSA J. 2008: 1–34.

Umweltbundesamt. Aluminium. Stellungnahme der Kommission „Human-Biomonitoring“ des Umweltbundesamtes. Bundesgesundhbl. 1998: 41.

Deutsche Forschungsgemeinschaft MAK- und BAT-Werte-Liste 2017. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte Ständige Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. Mitteilung 53. Weinheim, Germany: Wiley-VCH; 2017.

Kiesswetter E, Schaeper M, Buchta M, Schaller KH, Rossbach B, Scherhag H, Zschiesche W, Letzel S. Longitudinal study on potential neurotoxic effects of aluminium: I Assessment of exposure and neurobehavioural performance of Al welders in the train and truck construction industry over 4 years. Int Arch Occup Environ Health. 2007; 81 (1): 41–67.

Kraus T, Schaller KH, Angerer J, Hilgers RD, Letzel S. Aluminosis – detection of an almost forgotten disease with HRCT. J Occup Med Toxicol. 2006; 1: 4.

Rückgauer M. Labor und Diagnose, Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. Frankfurt am Main, Germany: TH-Books Verlagsgesellschaft mbH; 2012.




DOI: https://doi.org/10.37591/jopc.v11i2.7227

Refbacks

  • There are currently no refbacks.