Open Access Open Access  Restricted Access Subscription or Fee Access

Photoluminescent Reduced Graphene Oxide (rGO)–ZnO Nanocomposites Prepared Through one-pot Solvothermal Route

Mohit Sharma, S. L. Meena

Abstract


In the present article, we report solvothermal synthesis of reduced graphene oxide (rGO)–ZnO nanocomposites through in situ exfoliations of graphite oxide with two different zinc-containing precursors viz. Zinc acetate dihydrate and zinc(II) acetylacetonate in water-diethylene glycol medium with hexamethylenetetramine as a reducing agent. The obtained rGO–ZnO nanocomposites were characterized by X-ray diffraction, and the ZnO lattice parameters were calculated. Raman spectroscopy indicated the presence of characteristic bands of graphene and ZnO. Morphologies of the as-synthesized composites were studied using Scanning Electron Microscopy (SEM). Elemental mapping of the composites by Energy Dispersive Spectroscopy (EDS) indicated dispersion of ZnO over the graphene layers. It was noted that the use of Zn(CH3COO)2⋅2H2O precursor led to ZnO coated graphenic microspheres. When using Zn(acac)2 as a precursor, the ZnO growth was observed to be across the graphenic layers. The Photo-Luminescent properties of the composites were also investigated in detail and different emission peaks in the blue-green region were analysed.


Full Text:

PDF

References


Xiang Q., Yu J., Jaroniec M. Graphene-based semiconductor photocatalysts: Chem. Soc. Rev., 2012; 41(2):782–796.https://doi.org/10.1039/C1CS15172J

Wang Z. L. Zinc oxide nanostructures: growth, properties and applications, J. Phys. Condens. Matter, 2004; 16(25): R829–R858. DOI 10.1088/0953-8984/16/25/R01

Ozgur U., Alivov Ya. I., Liu C., et al. A comprehensive review of ZnO materials and devices, J. Appl. Phys., 2005; 98(4):041301-0. https://doi.org/10.1063/1.1992666

Li B., Cao H. ZnO@graphene composite with enhanced performance for the removal of dye from water, J. Mater. Chem., 2011; 21(10): 3346-3349. https://doi.org/10.1039/C0JM03253K

Li X., Wang, Q.,Zhao Y., Wu W., Chen, et al. Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites, J. Colloid Interface Sci., 2013;411: 69–75.https://doi.org/10.1016/j.jcis.2013.08.050

Liu X. Microwave-assisted synthesis of ZnO–graphene composite for photocatalytic reduction of Cr(VI), Catal. Sci. Technol.,2011;1(7): 1189–1193.DOI: 10.039/C1CY00109D

Luo Q.,Yu X.,Lei, B., et al. Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity, J. Phys. Chem. C, 2012; 116(14): 8111–8117.https://doi.org/10.1021/jp2113329

Hong H.-K . Epitaxial Growth of ZnO Monolayer on Graphene: The Thinnest Metal Oxide Semiconductor, Microsc. Microanal., 2017; 23(S1):1434–1435. https://doi.org/10.1017/ S1431927617007838

Wang L., Li Z., Chen J.,et al. Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite, Environ. Pollut., (2019) 249, 801–811. https://doi.org/10.1016/j.envpol.2019.03.071

Wu J., Shen X., Jiang L., Wang K. et al. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Appl. Surf. Sci., 2009; 256(9): 2826–2830.https://doi.org/10.1016/j.apsusc.2009.11.034

Tien H. N, One-pot synthesis of a reduced graphene oxide–zinc oxide sphere composite and its use as a visible light photocatalyst, Chem. Eng. J., 2013; 229:126–133.https://doi.org/10.1016/j.cej.2013.05.110

Fu X. W. Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector, Appl. Phys. Lett., 2012; 100(22): 223114.https://doi.org/10.1063/1.4724208

Lu T. Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors, J. Alloys Compd., 2011; 509(18): 5488–5492. https://doi.org/10.1016/j.jallcom.2011.02.136

Zhao Y., Liu L., Cui T., et al. Enhanced photocatalytic properties of ZnO/reduced graphene oxide sheets (rGO) composites with controllable morphology and composition, Appl. Surf. Sci., 2017; 412: 58–68.https://doi.org/10.1016/j.apsusc.2017.03.207

Woan K., Pyrgiotakis G., Sigmund W., Photocatalytic Carbon-Nanotube-TiO 2 Composites, Adv. Mater., 2009; 21(21): 2233–2239.https://doi.org/10.1002/adma.200802738

Cho S., Jang J.-W., Lee J. S. at el. Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis, CrystEngComm. 2010; 12(11): 3929.DOI: 10.1039/C0CE00063A

Singh V. K., Patra M. K., Manoth M., et al. “In situ synthesis of graphene oxide and its composites with iron oxide,” New Carbon Mater., 2009; 24(2): 147–152. https://doi.org/10.1016/S1872-5805(08)60044-X

Nethravathi C., Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon, 2008; 46(4): 1994–1998. https://doi.org/10.1016/j.carbon.2008.08.013

Warren B. E. X-Ray Diffraction in Random Layer Lattices, Phys. Rev., 1941; 59(9): 693–698. DOI:https://doi.org/10.1103/PhysRev.59.693

Jagadish C., Pearton S., Zinc Oxide Bulk, Thin Films and Nanostructures, 1st ed. Elsevier, 2006. (Book)

Doebelin N., Kleeberg R., Profex : a graphical user interface for the Rietveld refinement program BGMN, J. Appl. Crystallogr., 2015; 48(5): 1573–1580. https://doi.org/10.1107/S1600576 715014685 22. Hu W., Li Z., Yang J., Electronic and optical properties of graphene and graphitic ZnO nanocomposite structures, J. Chem. Phys., 2013; 138(12): 124706. https://doi.org/10.1063/1.47 96602

Tuinstra F., Koenig J. L. Raman spectrum of graphite, J. Chem. Phys., 1970, 53(3), 1126–1130. https://doi.org/10.1063/1.1674108 24. Saito R., Hofmann M., Dresselhaus.et al. Raman spectroscopy of graphene and carbon nanotubes, Adv. Phys., 2011; 60(3): 413–550.https://doi.org/10.1080/00018732.2011.582251

Ferrari A. C. Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006; 97(18): 187401,DOI:https://doi.org/10.1103/PhysRevLett.97.187401

Reich S., Thomsen C. Raman spectroscopy of graphite, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2004; 362(1824): 2271–2288.https://doi.org/10.1098/rsta.2004.1454

Cançado L. G. Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett., 2011;11(8): 3190–3196.https://doi.org/10.1021/nl201432g

Cuscó R. Temperature dependence of Raman scattering in ZnO, Phys. Rev. B, 2007;75(16): 165202.DOI:https://doi.org/10.1103/PhysRevB.75.165202

Zhang R., Yin P.-G., Wang N., Guo L. Photoluminescence and Raman scattering of ZnO nanorods, Solid State Sci., (2009);11(4): 865–869. https://doi.org/10.1016/j.solidsta tesciences.2008.10.016 30. Du Y., Zhang M.-S., Hong J., Shen Y.,et al. Structural and optical properties of nanophase zinc oxide, Appl. Phys. A Mater. Sci. Process., 2003;76(2): 171–176. https://doi.org/10.1007/s00339 0201404

Khenfouch M., Baïtoul M., Maaza M. White photoluminescence from a grown ZnO nanorods/graphene hybrid nanostructure, Opt. Mater. (Amst)., 2012; 34(8):1320–1326. https://doi.org/10.1016/j.optmat.2012.02.005

Eda G. Blue photoluminescence from chemically derived graphene oxide, Adv. Mater., 2011; 22(4): 505–509. https://doi.org/10.1002/adma.200901996

Chien C. T. Tunable photoluminescence from graphene oxide, Angew. Chemie - Int. Ed., 2012; 51(27): 6662–6666.DOI: 10.1002/anie.201200474

Biroju R. K., Rajender G.,Giri, P. K. On the origin and tunability of blue and green photoluminescence from chemically derived graphene: Hydrogenation and oxygenation studies, Carbon, 2015; 95: 228–238. https://doi.org/10.1016/j.carbon.2015.08.036

Cao L., Meziani M. J., Sahu S., Sun Y.-P. Photoluminescence Properties of Graphene versus Other Carbon Nanomaterials, Acc. Chem. Res., 2013; 46(1), 171–180. https://doi.org/10.1021/ar3 00128j

Pal S. K. Versatile photoluminescence from graphene and its derivatives, Carbon, 2015; 88: 86–112. https://doi.org/10.1016/j.carbon.2015.02.035

Rodrigues J., Ben Sedrine N., Correia M. R. et al. Photoluminescence investigations of ZnO micro/nanostructures, Mater. Today Chem., 2020; 16: 100243. https://doi.org/10.1016/j.mtche m.2020.100243

Mandal S. K. Engineering of ZnO/rGO nanocomposite photocatalyst towards rapid degradation of toxic dyes, Mater. Chem. Phys., 2019; 223: 456-465. https://doi.org/10.1016/j.matchem phys.2018.11.002

Li Y. T., Xu J. M., Tang Z. J., et al.. Nearly white light photoluminescence from ZnO/rGO nanocomposite prepared by a one-step hydrothermal method, J. Alloys Compd., 2017;715: 122–128. https://doi.org/10.1016/j.jallcom.2017.04.286

Kim Y.-J., Hadiyawarman Yoon, A., Kim M. Kim, et al. Hydrothermally grown ZnO nanostructures on few-layer graphene sheets, Nanotechnology, 2011; 22(24): 245603. DOI: 10.1088/0957-4484/22/24/245603

Kumar R., Singh R. K.,Singh D. P., Savu R., et al. Microwave heating time dependent synthesis of various dimensional graphene oxide supported hierarchical ZnO nanostructures and its photoluminescence studies, Mater. Des., 2016; 111: 291–300. https://doi.org/10.1016/j.matdes.20 16.09.018

Oba F., Choi M., Togo A. et al. Point defects in ZnO: an approach from first principles, Sci. Technol. Adv. Mater., 2011; 12(3), 034302. DOI: 10.1088/1468-6996/12/3/034302

Lin B., Fu Z. Jia Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett., 2001,79(7),943–945.https://doi.org/10.1063/1.1394173

Ahn C. H., Kim Y. Y., Kim D. C.,et al. A comparative analysis of deep level emission in ZnO layers deposited by various methods, J. Appl. Phys., 2009; 105(1): 013502. https://doi.org/10.1063/1.30 54175

Xu P. S., Sun Y. M., Shi C. S.,et al. The electronic structure and spectral properties of ZnO and its defects, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2003;199:286–290.https://doi.org/10.1016/S0168-583X(02)01425-8

Ding J.,Yan X., Xue Q. Study on field emission and photoluminescence properties of ZnO/graphene hybrids grown on Si substrates, Mater. Chem. Phys., 2012;133(1);123-128. https://doi.org/10.1016/j.matchemphys.2012.01.051

Zeng H., Duan, G. Li, Y., Yang S., et al. Blue Luminescence of ZnONanoparticles Based on Non-Equilibrium Processes:Defect Origins and Emission Controls, Adv. Funct.Mater., 2010; 20(4): 561–572.https://doi.org/10.1002/adfm.200901884

Patra M. K., Manzoor K. M., Vadera S. R., et al. Studies of luminescence properties of ZnO and ZnO:Zn nanorods prepared by solution growth technique, J. Lumin., 2008; 128: (2), 267–272. https://doi.org/10.1016/j.jlumin.2007.08.005

Hu J., Pan B. C. Electronic structures of defects in ZnO: Hybrid density functional studies, J. Chem. Phys., 2008;129(15):154706. https://doi.org/10.1063/1.2993166

Ahmed G., Hanif M., Zhao L., et al. Defect engineering of ZnO nanoparticles by graphene oxide leading to enhanced visible light photocatalysis. J. Mol. Catal. A Chem., 2016; 425: 310–321. https://doi.org/10.1016/j.molcata.2016.10.026

Djurišić A. B. Defect emissions in ZnO nanostructures. Nanotechnology, 2007; 18(9): 095702. DOI : 10.1088/0957-4484/18/9/095702




DOI: https://doi.org/10.37591/jopc.v11i2.7229

Refbacks

  • There are currently no refbacks.