

Prediction of Process Parameters of Friction Stir Welding Using Artificial Neural Network
Abstract
References
Sun N, Apelian D. Microstructural modification of A206 aluminium via friction stir processing. Mater Sci Forum. 2009; 618–619: 361–364.
McNelley TR. Friction stir processing (FSP): refining microstructures and improving properties. Rev Metalurgia. 2011; 46: 149–156.
Kumar AR, Varghese S, Sivapragash M. A comparative study of the mechanical properties of single and double sided friction stir welded aluminium joints. Procedia Eng. 2012; 38: 3951–3961.
Deng L, Yu D. Deep learning: methods and applications. Foundations Trends Signal Process. 2014; 7 (3–4): 197–387.
Wuest T, Weimer D, Irgens C, Thoben KD. Machine learning in manufacturing: advantages, challenges, and applications. Prod Manuf Res. 2016; 4 (1): 23–45.
Okuyucu H, Kurt A, Arcaklioglu E. Artificial neural network application to the friction stir welding of aluminum plates. Mater Des. 2007; 28 (1): 78–84.
Rajakumar S, Balasubramanian V. Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters. Mater Des. 2012; 40:
–35.
Shojaeefard MH, Khalkhali A, Akbari M, Asadi P. Investigation of friction stir welding tool parameters using FEM and neural network. Proc Inst Mech Eng Part L J Mater Des Appl. 2015; 229 (3): 209–217.
Na MG, Kim JW, Lim DH, Kang YJ. Residual stress prediction of dissimilar metals welding at NPPs using support vector regression. Nucl Eng Des. 2008; 238 (7): 1503–1510.
Wang Y, Sun Y, Lv P, Wang H. Detection of line weld defects based on multiple thresholds and support vector machine. NDT E Int. 2008; 41 (7): 517–524.
Pal M, Deswal S. Modelling pile capacity using Gaussian process regression. Comput Geotech. 2010; 37 (7–8): 942–947.
Manvatkar VD, Arora A, De A, DebRoy T. Neural network models of peak temperature, torque, traverse force, bending stress and maximum shear stress during friction stir welding. Sci Technol
Weld Join. 2012; 17 (6): 460–466.
Yousif YK, Daws KM, Kazem BI. Prediction of friction stir welding characteristic using neural network. Jordan J Mech Ind Eng. 2008; 2 (3): 151–155.
Verma SM, Misra JP. Study on temperature distribution during friction stir welding of 6082 aluminum alloy. Mater Today Proc. 2017; 4 (2): 1350–1356.
Yelamasetti B, Venkatramana G, Vishnu Vardhan T. Optimization of GTAW parameters for the development of dissimilar AA5052 and AA6061 joints. Mater Today Proc. 2021; 47 (Part 14):
–4356.
Aydin H, Bayram A, Esme U, Kazancoglu Y, Guven O. Application of grey relation analysis (GRA) and Taguchi method for the parametric optimization of friction stir welding (FSW) process. Mater
Technol. 2010; 44: 205–211.
Vijayan S, Raju R, Rao SRK. Multi objective optimization of friction stir welding process parameters on aluminum alloy AA 5083 using Taguchi-based grey relation analysis. Mater Manuf
Proc. 2010; 25: 1206–1212.
Periasamy K, Jayaraman M, Rajkumar S. Mechanical properties of 7075-t6 aluminium alloy surface hybrid composites synthesised by friction stir processing. Int J Rapid Manuf. 2019; 8: 52–64.
Thomas WM. Friction stir welding. International Patent Application No. PCT/GB92/02203; GB Patent Application No. 9125978.8; U.S. Patent No. 51991460317.
Dawes CJ. An introduction to friction stir welding and its development Weld Mater Fabrication. 1995; 63: 2−16.
Lim S, Kim S, Lee CG, Kim S. Tensile behavior of friction-stir-welded Al 6061-T651. Metall Mater Trans. 2004; 35: 2829−2835.
Elangovan K, Balasubramanian V. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater Des. 2008; 293: 362−373.
Barcellona A, Buffa G, Fratini L, Palmeri D. On microstructural phenomena occurring in friction stir welding of aluminium alloys. J Mater Process Technol. 2006; 177: 340−343.
Sato YS, Takauchi H, Park SHC, Kokawa H. Characteristics of the kissing-bond in friction stir welded Al alloy 1050. J Mater Sci Eng A. 2005; 405: 333−338.
Montgomery DC. Design and Analysis of Experiments. 9th edition. New York, NY: John Wiley & Sons; 2017.
Kalaivani R, Sudhagar K, Lakshmi P. Neural network based vibration control for vehicle active suspension system. Indian J Sci Technol. 2016; 9 (1): 1–8.
El-Gohary MA, El-Souhily BM, Rezeka SF, Awad T. Generalized neural inverse dynamics model for front-wheel mid-size passenger car. Int Rev Mech Eng. 2011; 5: 474–482.
Checcucci M, Sazzini F, Marconcini M, Arnone A, Coneri M, De Franco L, Toselli M. Assessment of a neural-network-based optimization tool: a low specific-speed impeller application. Int J Rotating Mach. 2011; 2011: Article 817547.
Khalil MF, El-Gohary MA, Shaito AA. Application of artificial neural network for the prediction of trimmed impeller size of a centrifugal pump. In: Eleventh International Conference of Fluid
Dynamics, Alexandria, Egypt, December 19–21, 2013. pp. 1–6.
Nagarkar MP, El-Gohary MA, Bhalerao YJ, Vikhe Patil GJ, Zaware Patil RN. Artificial neural network predication and validation of optimum suspension parameters of a passive suspension system. SN Applied Sciences. 2019; 1: 569. doi: 10.1007/s42452-019-0550-0.
Refbacks
- There are currently no refbacks.