Open Access Open Access  Restricted Access Subscription or Fee Access

Experimental Investigations to Improve the Electrical Characteristics of Nitride-Based Nanoelectronic High Electron Mobility Transistors

Subhadeep Mukhopadhyay, Avrajyoti Dutta

Abstract


In this work, the DC and RF performances of conventional nanoelectronic high electron mobility transistor (HEMT) are compared with those of two individually modified HEMT structures in a nano-scale regime. All simulation results are produced by the SILVACO- ATLAS physical simulator according to the performed designs of HEMT structures. In each of these HEMT structures, the formation of quantum well is demonstrated at unbiased condition. In the DC analysis of each structure, the variations in drain current are studied with respect to drain voltage and gate voltage. Also, the variation in transconductance is studied with gate voltage corresponding to each structure. In RF analysis, the variations in current gain cut-off frequency and power gain cut-off frequency are studied with gate voltage corresponding to each structure. The DC and RF performances are observed to be the highest for modified HEMT structure with inserted InN atomic layer (0.36 nm thick) among all designed structures in this work. Experimental verification on the performed theoretical investigations is the novelty of this research paper. The investigations on GaN/AlGaN/InN/GaN HEMT structure are another novelty of this research paper. Therefore, this work may be helpful to design and fabricate the biomedical sensors related to HEMT structures. Also, this work may be suitable for high-frequency applications related to HEMT structures.

Keywords


Quantum well; Atomic layer; Transconductance; Cut-off frequency

Full Text:

PDF

References


M. Charfeddine, H. Belmabrouk, M. A. Zaidi, H. Maaref, “2-D Theoretical Model for Current-Voltage Characteristics in AlGaN/GaN HEMTs”, Journal of Modern Physics, Vol. 3 (2012) Pages 881-886.

M. K. Chattopadhyay, S. Tokekar, “Thermal Model for DC Characteristics of AlGaN/GaN HEMTs including Self-Heating Effect and Non-Linear Polarization”, Microelectronics Journal, Vol. 39 (2008) Pages 1181-1188.

M. K. Chattopadhyay, S. Tokekar, “Temperature and Polarization Dependent Polynomial based Non-Linear Analytical Model for Gate Capacitance of AlmGa1-mN/GaN MODFET”, Solid-State Electronics, Vol. 50 (2006) Pages 220-227.

M. K. Chattopadhyay, S. Tokekar, “Analytical Model for the Transconductance of Microwave AlmGa1-mN/GaN HEMTs including Nonlinear Macroscopic Polarization and Parasitic MESFET Conduction”, Microwave and Optical Technology Letters, Vol. 49 (2007) Pages 382-389.

M. Korwal, S. Haldar, M. Gupta, R. S. Gupta, “Parasitic Resistance and Polarization-Dependent Polynomial-Based Non-Linear Analytical Charge-Control Model for AlGaN/GaN MODFET for Microwave Frequency Applications”, Microwave and Optical Technology Letters, Vol. 38 (2003) Pages 371-378.

S. Khandelwal, N. Goyal, T. A. Fjeldly, “A Physics-Based Analytical Model for 2DEG Charge Density in AlGaN/GaN HEMT Devices”, IEEE Transactions on Electron Devices, Vol. 58 (2011) Pages 3622-3625.

S. Khandelwal, Y. S. Chauhan, T. A. Fjeldly, “Analytical Modeling of Surface-Potential and Intrinsic Charges in AlGaN/GaN HEMT Devices”, IEEE Transactions on Electron Devices, Vol. 59 (2012) Pages 2856-2860.

S. Khandelwal, C. Yadav, Y. S. Chauhan, A. Curutchet, T. Zimmer, J. C. D. Jaeger, N. Defrance, T. A. Fjeldly, “Robust Surface-Potential-Based Compact Model for GaN HEMT IC Design”, IEEE Transactions on Electron Devices, Vol. 60 (2013) Pages 3216-3222.

S. Khandelwal, T. A. Fjeldly, “A Physics based Compact Model of I-V and C-V Characteristics in AlGaN/GaN HEMT Devices”, Solid-State Electronics, Vol. 76 (2012) Pages 60-66.

F. M. Yigletu, S. Khandelwal, T. A. Fjeldly, B. Iniguez, “Compact Charge-Based Physical Models for Current and Capacitances in AlGaN/GaN HEMTs”, IEEE Transactions on Electron Devices, Vol. 60 (2013) Pages 3746-3752.

S. Ghosh, A. Dasgupta, S. Khandelwal, S. Agnihotri, Y. S. Chauhan, “Surface-Potential-Based Compact Modeling of Gate Current in AlGaN/GaN HEMTs”, IEEE Transactions on Electron Devices, Vol. 62 (2015) Pages 443-448.

S. A. Ahsan, S. Ghosh, K. Sharma, A. Dasgupta, S. Khandelwal, Y. S. Chauhan, “Capacitance Modeling in Dual Field-Plate Power GaN HEMT for Accurate Switching Behavior”, IEEE Transactions on Electron Devices, Vol. 63 (2016) Pages 565-572.

A. Dasgupta, S. Khandelwal, Y. S. Chauhan, “Surface Potential Based Modeling of Thermal Noise for HEMT Circuit Simulation”, IEEE Microwave and Wireless Components Letters, Vol. 25 (2015) Pages 376-378.

S. Khandelwal, N. Goyal, T. A. Fjeldly, “A Precise Physics-Based Compact Model for 2-DEG Charge Density in GaAs HEMTs Applicable in all Regions of Device Operation” , Solid-State Electronics, Vol. 79 (2013) Pages 22-25.

S. Mukhopadhyay, S. Kalita, “Report on the Effects of Mole Fraction, Doping Concentration, Gate Length and Nano-Layer Thickness to Control the Device Engineering in the Nanoelectronic AlGaN/GaN HEMTs at 300 K to Enhance the Reputation of the National Institute of Technology Arunachal Pradesh”, Nano Trends, Vol. 19, Issue 1 (2017) Pages 15-47.

S. Kalita, S. Mukhopadhyay, “Effect of Gate Length on the Electrical Characteristics of Nanoelectronic AlGaN/GaN High Electron Mobility Transistors to Fabricate the Biomedical Sensors in Nanoelectronics”, Journal of Nanoelectronics and Optoelectronics, Vol. 13 (2018) Pages 1123-1127.

C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu, W. C. Liu, “Pd-Oxide- Al0.24Ga0.76As (MOS) High Electron Mobility Transistor (HEMT)-Based Hydrogen Sensor”, IEEE Sensors Journal, Vol. 6, No. 2 (2006) Pages 287-292.

X. Yu, C. Li, Z. N. Low, J. Lin, T. J. Anderson, H. T. Wang, F. Ren, Y. L. Wang, C. Y. Chang, S. J. Pearton, C. H. Hsu, A. Osinsky, A. Dabiran, P. Chow, C. Balaban, J. Painter, “Wireless Hydrogen Sensor Network using AlGaN/GaN High Electron Mobility Transistor Differential Diode Sensors”, Sensors and Actuators B, Vol. 135 (2008) Pages 188-194.

H. H. Lee, M. Bae, S. H. Jo, J. K. Shin, D. H. Son, C. H. Won, H. M. Jeong, J. H. Lee, S. W. Kang, “AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein”, Sensors, Vol. 15 (2015) Pages 18416-18426.

A. Ould-Abbas, O. Zeggai, M. Bouchaour, H. Zeggai, N. Sahouane, M. Madani, D. Trari, M. Boukais, N. E. Chabane-Sari, “Study on Functionalizing the Surface of AlGaN/GaN High Electron Mobility Transistor based Sensors”, Journal of Optoelectronics and Advanced Materials, Vol. 15, No. 11-12 (2013) Pages 1323-1327.

L. C. Wei, Q. Wang, C. Feng, H. L. Xiao, L. J. Jiang, C. M. Wang, W. Li, X. L. Wang, F. Q. Liu, X. G. Xu, Z. G. Wang, “Simulation Study of Enhancement-Mode InAlN/GaN HEMT with InGaN Cap Layer”, Journal of Nanoscience and Nanotechnology, Vol. 18 (2018) Pages 7400-7404.

M. Miao, C. G. V. D. Walle, “Nitride-Based High-Electron-Mobility Transistor with Single-Layer InN for Mobility-Enhanced Channel”, Applied Physics Express, Vol. 8 (2015) Page 024302.

K. Sinha, S. K. Dubey, A. Islam, “Study of High Al Fraction in AlGaN Barrier HEMT and GaN and InGaN Channel HEMT with In0.17Al0.83N Barrier”, Microsystem Technologies, Issue 7 (2020) Pages 1-14.

P. Murugapandiyan, V. R. Lakshmi, M. Wasim, K. M. Sundaram, “Investigation of Ultra-Scaled AlN/GaN/InGaN Double Heterojunction HEMT for High-Frequency Applications”, International Journal of Electronics Letters, Vol. 8, Issue 4 (2020) Pages 472-482.

Y. Ando, S. Kaneki, T. Hashizume, “Improved Operation Stability of Al2O3/AlGaN/GaN MOS High-Electron-Mobility Transistors Grown on GaN Substrates”, Applied Physics Express, Vol. 12 (2019) Page 024002.

N. Sharma, S. Mishra, K. Singh, N. Chaturvedi, A. Chauhan, C. Periasamy, D. K. Kharbanda,P. Parjapat, P. K. Khanna, N. Chaturvedi,“High-Resolution AlGaN/GaN HEMT-Based Electrochemical Sensor for Biomedical Applications,” IEEE Trans. Electron Devices, Vol. 67, No. 1, Pages 289–295 (2020).

B. S. Kang, H. T. Wang, F. Ren, S. J. Pearton, “Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors”, J. Appl. Phys., Vol. 104, No. 3 (2008) Page 031101.

Z. Gu, J. Wang, B. Miao, L. Zhao, X. Liu, D. Wu, J. Li, “Highly sensitive AlGaN/GaN HEMT biosensors using an ethanolamine modification strategy for bioassay applications,” RSC Adv., Vol. 9, No. 27, Pages 15341–15349 (2019).

A. K. Pulikkathodi, I. Sarangadharan, C. Y. Lo, P. H. Chen, C. C. Chen, Y. L. Wang, “Miniaturized biomedical sensors for enumeration of extracellular vesicles,” Int. J. Mol. Sci., Vol. 19, No. 8 (2018) Page 2213.

J. Wuerfl, E. Bahat-Treidel, F. Brunner, M. Cho, O. Hilt, A. Knauer, P. Kotara, O. Krueger, M. Weyers, R. Zhytnytska, “Device breakdown and dynamic effects in GaN power switching devices: Dependencies on material properties and device design”; ECS Transactions, Vol. 50, Pages 211-222 (2012).

S. Russo, A. D. Carlo, “Influence of the Source–Gate Distance on the AlGaN/GaN HEMT Performance”, IEEE Transactions on Electron Devices, Vol. 54, No. 5, Pages 1071-1075 (2007).

S. M. Sze, K. K. Ng,“Physics of Semiconductor Devices”, 3rd Edition, John Wiley & Sons (2007).

J.Guo, C. Qiu, H. Zhu, Y. Wang,“Nanotribological Properties of Ga- and N-Faced Bulk Gallium Nitride Surfaces Determined by Nanoscratch Experiments”, Materials, Vol. 12, Page 2653 (2019).

G. Parish, G. A. Umana-Membreno, S. M. Jolley, D. Buttari, S. Keller, B. D. Nener, U. K. Mishra, “AlGaN/AlN/GaN high electron mobility transistors with improved carrier transport,” Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices, Pages 29–32, 2004, Brisbane, Australia.

T. R. Lenka, A. K. Panda, “Role of nanoscaleAlN and InN for the microwave characteristics of AlGaN/(Al,In)N/GaN-based HEMT”, Semiconductors, Vol. 45, No. 9, Pages 1211–1218 (2011).

A. Yoshikawa, S. B. Che, W. Yamaguchi, H. Saito, X. Q. Wang, Y. Ishitani, E. S. Hwang, “Proposal and achievement of novel structure InN/GaN multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix”, Appl. Phys. Lett., Vol. 90, No. 7, Page 073101 (2007).

M. Legallais, H. Mehdi, S. David , F. Bassani, S. Labau , B. Pelissier , T. Baron , E. Martinez, G. Ghibaudo, B. Salem , “Improvement of AlN Film Quality Using Plasma Enhanced Atomic Layer Deposition with Substrate Biasing”, ACS Appl. Mater. Interfaces, Vol. 12, No. 35, Pages 39870–39880 (2020).

V. Rontu, P. Sippola, M. Broas, G. Ross, T. Sajavaara, H. Lipsanen, M. Paulasto-Krockel, S. Franssila, “Atomic layer deposition of AlN from AlCl3 using NH3 and Ar/NH3 plasma”, J. Vac. Sci. Technol. A, Vol. 36, Page 021508 (2018).

P. Deminskyi, P. Rouf, I. G. Ivanov, H. Pedersen, “Atomic layer deposition of InN using trimethylindium and ammonia plasma”, J. Vac. Sci. Technol. A, Vol. 37, No. 2, Page 020926 (2019).

ATLAS User’s Manual, Device simulation software, SILVACO Inc. Santa Clara, CA 95054, www.silvaco.com.

H. Sánchez-Martín, Ó. García-Pérez, S. Pérez, P. Altuntas, V. Hoel, S. Rennesson, Y. Cordier, T. González, J. Mateos, I. Íñiguez-de-la-Torre, “Anomalous DC and RF Behavior of Virgin AlGaN/AlN/GaN HEMTs”, Semicond. Sci. Technol., Vol. 32, Page 035011 (2017).

L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, U. K. Mishra, “AlGaN/AlN/GaN high-power microwave HEMT”, IEEE Electron Device Lett., Vol. 22, No. 10, Pages 457–459 (2001).

X. Wang, G. Hu, Z. Ma, J. Ran, C. Wang, H. Xiao, J. Tang, J. Li, J. Wang, Y. Zeng, J. Li, Z. Wang, “AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD”, J. Cryst. Growth, Vol. 298, Pages 835–839 (2007).

Y. Hao, L. Yang, X. Ma, J. Ma, M. Cao, C. Pan, C. Wang, J. Zhang, “High-performance microwave gate-recessed AlGaN/AlN/GaN MOS-HEMT with 73% power-added efficiency”, IEEE Electron Device Lett., Vol. 32, Issue 5, Pages 626–628 (2011).

D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi, K. Matsumoto, “Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon (111) substrate”, Appl. Phys. Express, Vol. 6, No. 2 (2013) Page 026501.

M. Miyoshi, A. Imanish, H. Ishikawa, T. Egawa, K. Asai, M. Mouri, T. Shibata, M. Tanaka, O. Oda, “High performance AlGaN/AlN/GaN HEMTs grown on 100-mm-diameter epitaxial AlN/sapphire templates by MOVPE”, IEEE Compound Semiconductor Integrated Circuit Symposium, Monterey, CA, USA, Pages 193–196 (2004).

G. Meneghesso, M. Meneghini, E. Zanoni, “Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion”, ISBN: 978-3-319-77994-2, Springer International Publishing AG, part of Springer Nature (2018).

K. P. Ghatak, S. Bhattacharya, “Heavily-Doped 2D-Quantized Structures and the Einstein Relation”, Springer, Switzerland, 2015.

K. P. Ghatak, “Einstein’s Photoemission: Emission from Heavily-Doped Quantized Structures”, Springer, Switzerland, 2015.

S. Mukhopadhyay, “Experimental Investigations on the Surface-Driven Capillary Flow of Aqueous Microparticle Suspensions in the Microfluidic Laboratory-on-a-Chip Systems”, Surface Review and Letters, Vol. 24, No. 8 (2017) Page 1750107.

S. Kalita, “Studies on the Quantum Well Heterostructure for Gallium Nitride based High Electron Mobility Transistors”, PhD-Thesis, 2019, National Institute of Technology Arunachal Pradesh, India.

A. Acharyya, S. Chatterjee, A. Das, K. A. Singh, “Self-Consistent Solution of Schrodinger-Poisson Equations in a Reverse Biased Nano-Scale p-n Junction based on Si/Si0.4Ge0.6/Si Quantum Well”, Journal of Computational Electronics, Vol. 14 (2015) Pages 180-191.

S. Mukhopadhyay, S. S. Roy, Raechelle A. D'Sa, A. Mathur, R. J. Holmes, J. A. McLaughlin, “Nanoscale Surface Modifications to Control Capillary Flow Characteristics in PMMA Microfluidic Devices”, Nanoscale Research Letters, Vol. 6 (2011) Page 411.

S. Mukhopadhyay, J. P. Banerjee, A. Mathur, M. Tweedie, J. A. McLaughlin, S. S. Roy, “Experimental Studies of Surface-Driven Capillary Flow in PMMA Microfluidic Devices prepared by Direct Bonding Technique and Passive Separation of Microparticles in Microfluidic Laboratory-on-a-Chip Systems”, Surface Review and Letters, Vol. 22, No. 4 (2015) Page 1550050.

S. Mukhopadhyay, J. P. Banerjee, S. S. Roy, S. K. Metya, M. Tweedie, J. A. McLaughlin, “Effects of Surface Properties on Fluid Engineering Generated by the Surface-Driven Capillary Flow of Water in Microfluidic Lab-on-a-Chip Systems for Bioengineering Applications”, Surface Review and Letters, Vol. 24, No. 3 (2017) Page 1750041.

S. Mukhopadhyay, “Experimental Investigations on the Effects of Surface Modifications to Control the Surface-Driven capillary flow of Aqueous Working Liquids in the PMMA Microfluidic Devices”, Advanced Science, Engineering and Medicine, Vol. 9, Number 11 (2017) Pages 959-970.

S. Mukhopadhyay, “Experimental Studies on Microfluidic Flow Characteristics and Microparticles Separation in Lab-on-a-Chip Systems”, PhD-Thesis, 2011, University of Ulster, United Kingdom.

A. Nigam, T. N. Bhat, S. Rajamani, S. B. Dolmanan, S. Tripathy, M. Kumar, “Effect of Self-Heating on Electrical Characteristics of AlGaN/GaN HEMT on Si (111) Substrate”, AIP Advances, Vol. 7 (2017) Page 085015.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Journal of Semiconductor Devices and Circuits

Publisher: STM Journals, an imprint of CELNET (Consortium e-Learning Network Pvt. Ltd.)

Address: A-118, 1st Floor, Sector-63, Noida, Uttar Pradesh-201301, India

Phone no.: 0120-478-1215/ Email: [email protected]