Open Access Open Access  Restricted Access Subscription or Fee Access

Design and Performance of Semiconductor-Biosensor

Subhadeep Mukhopadhyay, Avrajyoti Dutta

Abstract


In this work, a high electron mobility transistor (HEMT) based biosensor is designed to detect the virus-protein. In this work, all the simulation-studies are carried out in the SILVACO-ATLAS physical simulator using the following models: Shockley Read Hall (SRH), band gap narrowing, Auger recombination, and Fermi Dirac statistics. Newton trap numerical solver is used in the device simulation. Conduction band engineering of the biosensor is studied. DC and RF properties of the designed biosensor are studied. Sensitivity of the biosensor is studied corresponding to electric field, surface potential, drain current, transconductance, and current gain cut-off frequency. Sufficient sensitivity is obtained corresponding to each electrical parameter to detect the virus-protein. We have studied the sensitivity of biosensor by considering only dielectric constant of protein biomolecules since sharp variation in dielectric constant of different protein biomolecules shows a good change in electrical behaviour of designed biosensor. In the whole simulation work, the range of dielectric constant (K) of virus-protein is considered as 2 to 4. Air (K=1) is considered as reference dielectric in the simulation. This work may be helpful to design and experimentally fabricate the HEMT based biosensor. To study the sensing kinetics, we have to observe the biosensor in wet environment after fabrication. Hence, this is our one future work to fabricate and study the biosensor in wet environment.

Keywords


Protein, Dielectric constant, Transconductance, Sensitivity

Full Text:

PDF

References


C. A. Vu, W. Y. Chen, “Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects”, Sensors, Vol. 19 (2019) Page 4214.

I. Sarangadharan, A. K. Pulikkathodi, C. H. Chu, Y. W. Chen, A. Regmi, P. C. Chen, C. P. Hsu, Y. L. Wang, “Review---High Field Modulated FET Biosensors for Biomedical Applications”, ECS Journal of Solid State Science and Technology, Vol. 7 (2018) Pages Q3032-Q3042.

A. K. Pulikkathodi, I. Sarangadharan, C. Y. Lo, P. H. Chen, C. C. Chen, Y. L. Wang, “Miniaturized Biomedical Sensors for Enumeration of Extracellular Vesicles”, International Journal of Molecular Sciences, Vol. 19 (2018) Page 2213.

R. Narang, M. Saxena, R. S. Gupta, M. Gupta, “Dielectric Modulated Tunnel Field-Effect Transistor ----- A Biomolecule Sensor”, IEEE Electron Device Letters, Vol. 33, No. 2 (2012) Pages 266-268.

M. S. Parihar, A. Kranti, “Enhanced Sensitivity of Double Gate Junction-Less Transistor Architecture for Biosensing Applications”, Nanotechnology, Vol. 26, No. 14 (2015) Pages 1-8.

H. Im, X. J. Huang, B. Gu, Y. K. Choi, “A Dielectric-Modulated Field-Effect Transistor for Biosensing”, Nature Nanotechnology, Vol. 2 (2007) Pages 430-434.

A. Lahgere, C. Sahu and J. Singh, “Electrically Doped Dynamically

Configurable Field Effect Transistor for Low-Power and High-Performance

Applications”, Electronics Letters, Vol. 51, No. 16 (2015) Pages 1284-1286.

S. Yadav, R. Madhukar, D. Sharma, M. Aslam,

D. Soni, N. Sharma, “A New Structure of Electrically Doped

TFET for Improving Electronic Characteristics”, Applied Physics A, Vol.

, No. 7 (2018) Pages 517-526.

M. Charfeddine, H. Belmabrouk, M. A. Zaidi, and H. Maaref, “2-D Theoretical Model for Current-Voltage Characteristics in AlGaN/GaN HEMTs”, Journal of Modern Physics, Vol. 3, (2012) Pages 881-886.

M. K. Chattopadhyay and S. Tokekar, “Thermal Model for DC Characteristics of AlGaN/GaN HEMTs including Self-Heating Effect and Non-Linear Polarization”, Microelectronics Journal, Vol. 39 (2008) Pages 1181-1188.

M. K. Chattopadhyay and S. Tokekar, “Temperature and Polarization dependent Polynomial based Non-Linear Analytical Model for Gate Capacitance of AlmGa1-mN/GaN MODFET”, Solid-State Electronics, Vol. 50 (2006) Pages 220-227.

M. K. Chattopadhyay and S. Tokekar, “Analytical Model for the Transconductance of Microwave AlmGa1-mN/GaN HEMTs including Nonlinear Macroscopic Polarization and Parasitic MESFET Conduction”, Microwave and Optical Technology Letters, Vol. 49 (2007) Pages 382-389.

M. Korwal, S. Haldar, M. Gupta and R. S. Gupta, “Parasitic Resistance and Polarization-Dependent Polynomial-Based Non-Linear Analytical Charge-Control Model for AlGaN/GaN MODFET for Microwave Frequency Applications”, Microwave and Optical Technology Letters, Vol. 38 (2003) Pages 371-378.

S. Khandelwal, N. Goyal and T. A. Fjeldly, “A Physics-Based Analytical Model for 2DEG Charge Density in AlGaN/GaN HEMT Devices”, IEEE Transactions on Electron Devices, Vol. 58 (2011) Pages 3622-3625.

S. Khandelwal, Y. S. Chauhan and T. A. Fjeldly, “Analytical Modeling of Surface-Potential and Intrinsic Charges in AlGaN/GaN HEMT Devices”, IEEE Transactions on Electron Devices, Vol. 59 (2012) Pages 2856-2860.

S. Khandelwal, C. Yadav, S. Agnihotri, Y. S. Chauhan, A. Curutchet, T. Zimmer, J. C. D. Jaeger, N. Defrance and T. A. Fjeldly, “Robust Surface-Potential-Based Compact Model for GaN HEMT IC Design”, IEEE Transactions on Electron Devices, Vol. 60 (2013) Pages 3216-3222.

S. Khandelwal and T. A. Fjeldly, “A Physics based Compact Model of I-V and C-V Characteristics in AlGaN/GaN HEMT Devices”, Solid-State Electronics, Vol. 76 (2012) Pages 60-66.

S. Khandelwal, N. Goyal and T. A. Fjeldly, “A Precise Physics-Based Compact Model for 2-DEG Charge Density in GaAs HEMTs applicable in all Regions of Device Operation”, Solid-State Electronics, Vol. 79 (2013) Pages 22-25.

S. Kalita and S. Mukhopadhyay, “Effect of Gate Length on the Electrical Characteristics of Nanoelectronic AlGaN/GaN High Electron Mobility Transistors to Fabricate the Biomedical Sensors in Nanoelectronics”, Journal of Nanoelectronics and Optoelectronics, Vol. 13 (2018) Pages 1123-1127.

U. K. Mishra, P. Parikh and Y. F. Wu, “AlGaN/GaN HEMTs-An Overview of Device Operation and Applications”, Proc. IEEE, Vol. 90 (2002) Pages 1022-1031.

U. K. Mishra, L. Shen, T. E. Kazior and Y. F. Wu, “GaN-Based RF Power Devices and Amplifiers”, Proc. IEEE, Vol. 96 (2008) Pages 287-305.

E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean, J. Massies, C. Skierbiszewski and T. Suski, “High Electron Mobility in AlGaN/GaN Heterostructures Grown on Bulk GaN Substrates”, Appl. Phys. Lett., Vol. 77 (2000) Pages 2551-2553.

D. Visalli, M. V. Hove, J. Derluyn, S. Degroote, M. Leys, K. Cheng, M. Germain and G. Borghs, “AlGaN/GaN/AlGaN Double Heterostructures on Silicon Substrates for High Breakdown Voltage Field-Effect Transistors with Low On-Resistance”, Jpn. J. Appl. Phys., Vol. 48 (2009) Page 04C101.

M. Kuzuhara and H. Tokuda, “Low-Loss and High-Voltage III-Nitride Transistors for Power Switching Applications”, IEEE Transactions on Electron Devices, Vol. 62 (2015) Pages 405-413.

J. Kuzmik, “Power Electronics on InAlN/(In) GaN: Prospect for a Record Performance”, IEEE Electron Devices Lett., Vol. 22 (2001) Pages 510-512.

N. M. Shrestha, Y. Li and E. Y. Chang, “Simulation Study on Electrical Characteristic of AlGaN/GaN High Electron Mobility Transistors with AlN Spacer Layer”, Jpn. J. Appl. Phys., Vol. 53 (2014) Page 04EF08.

A. Teke, S. Gokden, R. Tulek, J. H. Leach, Q. Fan, J. Xie, U. Ozgur, H. Morkoc, S. B. Lisesivdin and E. Ozbay, “The Effect of AlN Interlayer Thicknesses on Scattering Processes in Lattice-Matched AlInN/GaN Two-Dimensional Electron Gas Heterostructures”, New J. Phys., Vol. 11 (2009) Page 063031.

C. H. Morko, R. Cingolani and B. Gil, “Polarization Effects in Nitride Semiconductor Device Structures and Performance of Modulation Doped Field Effect Transistors”, Solid-State Electron., Vol. 43 (1999) Pages 1909-1927.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov and L. Wittmer, “Two-Dimensional Electron Gases induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures”, J. Appl. Phys., Vol. 87 (1999) Pages 3222-3233.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini and V. Tilak, “Pyroelectric Properties of Al (In) GaN/GaN Hetero- and Quantum Well Structures”, J. Phys. Condens. Matter, Vol. 14 (2002) Pages 3399-3434.

R. R. Pela, C. Caetano, L. G. Ferreira, J. Furthmuller and L. K. Teles, “Accurate Band Gaps of AlGaN, InGaN, and AlInN Alloys Calculations based on LDA-1/2 Approach”, Appl. Phys. Lett., Vol. 98 (2011) Page 151907.

M. K. Gilson, B. H. Honig, “The Dielectric Constant of a Folded Protein”, Biopolymers, Vol. 25, No. 11 (1986) Pages 2097-2119.

M. S. Miao, C. G. V. D. Walle, “Nitride-based High-Electron-Mobility Transistor with Single-Layer InN for Mobility-Enhanced Channel”, Applied Physics Express, Vol. 8 (2015) Page 024302.

T. R. Lenka, A. K. Panda, “Role of Nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al,In)N/GaN-based HEMT”, Semiconductors, Vol. 45, No. 9, Pages 1211–1218 (2011).

A. Yoshikawa, S. B. Che, W. Yamaguchi, H. Saito, X. Q. Wang, Y. Ishitani, E. S. Hwang, “Proposal and achievement of novel structure InN/GaN multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix,” Applied Physics Letters, Vol. 90, Page 073101 (2007).

M. Legallais, H. Mehdi, S. David , F. Bassani, S. Labau , B. Pelissier , T. Baron , E. Martinez, G. Ghibaudo, B. Salem , “Improvement of AlN Film Quality Using Plasma Enhanced Atomic Layer Deposition with Substrate Biasing”, ACS Applied Materials and Interfaces, Vol. 12, Pages 39870–39880 (2020).

V. Rontu, P. Sippola, M. Broas, G. Ross, T. Sajavaara, H. Lipsanen, M. Paulasto-Krockel, S. Franssila, “Atomic layer deposition of AlN from AlCl3 using NH3 and Ar/NH3 plasma”, J. Vac. Sci. Technol. A, Vol. 36, Page 021508 (2018).

P. Deminskyi, P. Rouf, I. G. Ivanov, H. Pedersen, “Atomic layer deposition of InN using trimethylindium and ammonia plasma”, J. Vac. Sci. Technol. A, Vol. 37, No. 2, Page 020926 (2019).

V. Hemaja, D. K. Panda, “A Comprehensive Review on High Electron Mobility Transistor (HEMT) Based Biosensors: Recent Advances and Future Prospects and its Comparison with Si-Based Biosensor”, Silicon (2021). https://doi.org/10.1007/s12633-020-00937-w.

N. Kannan, S. Kalra, M. J. Kumar, “Thin Capacitively-Coupled Thyristor as an Ultrasensitive Label-Free Nanogap Biosensor: Proposal and Investigation”, IEEE Sensors Letters, Vol. 1, No. 6, Page 4500904 (2017).

W. D. Hu, X. S. Chen, Z. J. Quan, X. M. Zhang, Y. Huang, C. S. Xia, W. Lu, and P. D. Ye, “Simulation and Optimization of GaN-based Metal-Oxide-Semiconductor High-Electron-Mobility-Transistor using Field-Dependent Drift Velocity Model”, Journal of Applied Physics, Vol. 102, Page 034502 (2007).

J. Y. Kim, J. H. Ahn, S. J. Choi, M. Im, S. Kim, J. P. Duarte, C. H. Kim, T. J. Park, S. Y. Lee, and Y. K. Choi, “An Underlap Channel-Embedded Field-Effect Transistor for Biosensor Application in Watery and Dry Environment”, IEEE Transactions on Nanotechnology, Vol. 11, No. 2, Pages 390-394 (2012).

M. A. Ahmad, R. M. Milhem, N. G. Panicker, T. A. Rizvi, F. Mustafa, “Electrical characterization of DNA supported on nitrocellulose membranes”, Scientific Reports, Vol. 6, Page 29089 (2016).

P. Mehrotra, B. Chatterjee, and S. Sen, “EM-Wave Biosensors: A Review of RF, Microwave, mm-Wave and Optical Sensing”, Sensors, Vol. 19, Page 1013 (2019).


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Journal of Semiconductor Devices and Circuits

Publisher: STM Journals, an imprint of CELNET (Consortium e-Learning Network Pvt. Ltd.)

Address: A-118, 1st Floor, Sector-63, Noida, Uttar Pradesh-201301, India

Phone no.: 0120-478-1215/ Email: [email protected]